
MATH 141 - Quiz 6, Solution 1 pm

1. (5 points) Determine whether the following series converges or diverges. Explain what
test(s) you use and how each test applies.
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Solution: Apply ratio test on this series.
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Take the limit,
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So, the ratio tends to be infinity, which is greater than 1. By ratio test, the series
diverges.

2. (5 points) Find the radius of convergence of the series

∞∑
n=1

3n

(2n)!
xn.

Solution: Use generalized ratio test on this series.∣∣∣∣an+1
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When n→∞, the ratio tends to be 0. So, the radius of convergence is R =∞.

3. (5 points) Find the sum of the series
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Solution: Rewrite the series like below.
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Then, we can apply formula for geometric series (as |r| = 2/3 < 1)
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4. (5 points) Find the interval of convergence of the series
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Solution: Use generalized ratio test on this series.∣∣∣∣an+1
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The series will converge if 3|x| < 1, and will diverge if 3|x| > 1. So, the radius of
convergence is R = 1/3.

Specially, when x = 1/3,
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So, 1/3 is excluded in the interval of convergence.

Also, when x = −1/3,
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This series diverge by alternating series test. (limn→∞ an = 1) So, −1/3 is also
excluded in the interval of convergence.

To sum up, the interval of convergence should be (−1/3, 1/3).
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