MATH 141 - Quiz 6, Solution 2 pm

1. (5 points) Determine whether the following series converges or diverges. Explain what
test(s) you use and how each test applies.
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Solution: Apply ratio test on this series.
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So, the ratio is 0, which is less than 1. By ratio test, the series converges.

2. (5 points) Find the radius of convergence of the series
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Solution: Use generalized ratio test on this series. (Generalized root test is also

suitable.)
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The series will converge if |z|*> < 1, and will diverge if |z|> > 1. So, the radius of
convergence is R = 1.

3. (5 points) Find the sum of the series
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Solution: We know the Taylor expansion for e* around z = 0 is
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And the radius of convergence R = oc.

So, we can take x = 1, and have the following equality.
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Now, back to solve the sum of the given series.
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. (5 points) Find the interval of convergence of the series
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Solution: Use generalized ratio test on this series.
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When n — oo, the ratio tends to be 0 for any x. So, the radius of convergence is
R = 00, and the interval of convergence is (—o0, 00).
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