1. (5 points) Determine whether the following series converges or diverges. Explain what test(s) you use and how each test applies.

$$
\sum_{n=2}^{\infty} \frac{5^{n+1} n!}{(2 n+1)!}
$$

Solution: Apply ratio test on this series.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\frac{5^{n+2}}{5^{n+1}} \frac{(n+1)!}{n!}}{\frac{(2 n+3)!}{(2 n+1)!}}=\frac{5(n+1)}{(2 n+3)(2 n+2)}
$$

Take the limit,

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{5(n+1)}{(2 n+3)(2 n+2)}=0
$$

So, the ratio is 0 , which is less than 1 . By ratio test, the series converges.
2. (5 points) Find the radius of convergence of the series

$$
\sum_{n=3}^{\infty} x^{3 n}
$$

Solution: Use generalized ratio test on this series. (Generalized root test is also suitable.)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x|^{3 n+3}}{|x|^{3 n}}=|x|^{3}
$$

The series will converge if $|x|^{3}<1$, and will diverge if $|x|^{3}>1$. So, the radius of convergence is $R=1$.
3. (5 points) Find the sum of the series

$$
\sum_{n=2}^{\infty} \frac{2}{(n+1) n!}
$$

Solution: We know the Taylor expansion for e^{x} around $x=0$ is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

And the radius of convergence $R=\infty$.
So, we can take $x=1$, and have the following equality.

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

Now, back to solve the sum of the given series.

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{2}{(n+1) n!} & =2 \sum_{n=2}^{\infty} \frac{1}{(n+1)!}=2 \sum_{n=3}^{\infty} \frac{1}{n!} \\
& =2\left(\sum_{n=0}^{\infty} \frac{1}{n!}-\frac{1}{0!}-\frac{1}{1!}-\frac{1}{2!}\right)=2\left(e-1-1-\frac{1}{2}\right)=2 e-5
\end{aligned}
$$

4. (5 points) Find the interval of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{2^{n+1} x^{n}}{n!}
$$

Solution: Use generalized ratio test on this series.

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{2^{n+2}}{2^{n+1}} \frac{|x|^{n+1}}{\mid x x^{n}}}{\frac{(n+1)!}{n!}}=\frac{2|x|}{n+1}
$$

When $n \rightarrow \infty$, the ratio tends to be 0 for any x. So, the radius of convergence is $R=\infty$, and the interval of convergence is $(-\infty, \infty)$.

