QUIZ 8 SOLUTIONS

Sections at 12 pm

Problem 1
Compute all fourth roots of unity.
Solution. For each natural number n there are exactly $n n$-th roots of unity, which can be expressed as:

$$
z_{k}=e^{i \frac{2 \pi}{n} k}, k=0,1, \ldots, n-1
$$

In our case $\mathrm{n}=4$, hence,

$$
z_{k}=e^{i \frac{2 \pi}{4} k}=e^{i \frac{\pi k}{2}}, k=0,1,2,3 .
$$

Thus, the 4 -th roots of 1 are:

$$
z_{0}=e^{i 0}=1, z_{1}=e^{i \frac{2 \pi}{4}}=i, z_{2}=e^{i \frac{i \pi}{4} 2}=e^{i \pi}=-1, z_{3}=e^{i \frac{2 \pi}{4} 3}=e^{i \frac{3 \pi}{2}}=-i
$$

Answer: 1, I, -1, -I.
Problem 2
Find the complex polar represntation of the complex number $z=-1+i \sqrt{3}$.
Solution. We need to find such R and Θ that $z=-1+i \sqrt{3}=R e^{i \Theta}$.

$$
R=|z|=\sqrt{1^{2}+(\sqrt{3})^{2}}=\sqrt{4}=2
$$

Therefore,

$$
z=2 e^{i \Theta}=2\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)
$$

where Θ satisfies

$$
\cos \Theta=-\frac{1}{2}, \sin \Theta=\frac{\sqrt{3}}{2} \Rightarrow \Theta=\frac{2 \pi}{3}
$$

Answer: $z=2 e^{i \frac{i \pi}{3}}$.
Problem 3
Write in polar coordinates the equation

$$
y^{2}=4
$$

Solution. In polar coordinates $y=r \sin \Theta$. Hence,

$$
r^{2} \sin ^{2} \Theta=4, \quad \sin \Theta= \pm 2
$$

PROBLEM 4
Sketch the graph of the polar equation

$$
\Theta=-\frac{7 \pi}{6}
$$

Solution. Since there is no restriction on r, it can take all possible values, i.e. r can be any non-negative number. Hence, the graph should contain all complex numbers $z=r e^{-i \frac{7 \pi}{6}}$, those are shown in blue on the plot.

Sections at 1 pm

Problem 1

Compute all fourth roots of unity.

Solution. For each natural number n there are exactly $n n$-th roots of unity, which can be expressed as:

$$
z_{k}=e^{i \frac{2 \pi}{n} k}, k=0,1, \ldots, n-1
$$

In our case $\mathrm{n}=4$, hence,

$$
z_{k}=e^{i \frac{2 \pi}{4} k}=e^{i \frac{\pi k}{2}}, k=0,1,2,3 .
$$

Thus, the 4 -th roots of 1 are:

$$
z_{0}=e^{i 0}=1, z_{1}=e^{i \frac{2 \pi}{4}}=i, z_{2}=e^{i \frac{2 \pi}{4} 2}=e^{i \pi}=-1, z_{3}=e^{i \frac{2 \pi}{4} 3}=e^{i \frac{3 \pi}{2}}=-i
$$

Answer: $1, i,-1,-i$.
Problem 2
Find the complex polar represntation of the complex number $z=2+2 i$.
Solution. We need to find such R and Θ that $z=2+i 2=R e^{i \Theta}$.

$$
R=|z|=\sqrt{2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}
$$

Therefore,

$$
z=2 \sqrt{2} e^{i \Theta}=2 \sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)
$$

where Θ satisfies

$$
\cos \Theta=\frac{1}{\sqrt{2}}, \sin \Theta=\frac{1}{\sqrt{2}} \Rightarrow \Theta=\frac{\pi}{4}
$$

Answer: $z=2 \sqrt{2} e^{i \pi / 4}$.

Problem 3

Write in polar coordinates the equation

$$
2 x+3 y=4
$$

Solution. In polar coordinates $x=r \cos \Theta, y=r \sin \Theta$. Hence,

$$
2 r \cos (\Theta)+3 r \sin (\Theta)=4
$$

Problem 4
Sketch the graph of the polar equation

$$
\Theta=\frac{3 \pi}{2}
$$

Solution. Since there is no restriction on r, it can take all possible values, i.e. r can be any non-negative number. Hence, the graph should contain all complex numbers $z=r e^{i 3 \pi / 2}$. This set is shown in blue on the plot below:

Sections at 2 pm

Problem 1

Compute all fifth roots of unity.

Solution. For each natural number n there are exactly $n n$-th roots of unity, which can be expressed as:

$$
z_{k}=e^{i \frac{2 \pi}{n} k}, k=0,1, \ldots, n-1
$$

In our case $\mathrm{n}=5$, hence,

$$
z_{k}=e^{i \frac{2 \pi}{5} k}, k=0,1,2,3,4
$$

Thus, the 5 -th roots of 1 are:

$$
z_{0}=e^{i 0}=1, z_{1}=e^{i \frac{2 \pi}{5}}, z_{2}=e^{i \frac{4 \pi}{5}}, z_{3}=e^{i \frac{6 \pi}{5}}, z_{4}=e^{i \frac{8 \pi}{5}}
$$

Answer: 1, $i,-1,-i$.
Problem 2
Find the complex polar representation of the complex number $z=1+\sqrt{3} i$.
Solution. We need to find such R and Θ that $z=1+\sqrt{3} i=R e^{i \Theta}$.

$$
R=|z|=\sqrt{1^{2}+(\sqrt{3})^{2}}=\sqrt{4}=2 .
$$

Therefore,

$$
z=2 e^{i \Theta}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)
$$

where Θ satisfies

$$
\cos \Theta=\frac{1}{2}, \sin \Theta=\frac{\sqrt{3}}{2} \Rightarrow \Theta=\frac{\pi}{3}
$$

ANSWER: $z=2 e^{i \pi / 3}$.

Problem 3
Write in polar coordinates the equation

$$
x^{2}+y^{2}=1 .
$$

Solution. In polar coordinates $x=r \cos \Theta, y=r \sin \Theta$. Hence,

$$
r^{2} \cos ^{2}(\Theta)+r^{2} \sin ^{2}(\Theta)=r^{2}=1
$$

Answer: $r^{2}=1$.

Problem 4

Sketch the graph of the polar equation

$$
r=5
$$

Solution. Since there is no restriction on Θ, it can take all possible values. Hence, the graph should contain all complex numbers $z=5 e^{i \Theta}$, i.e. all numbers with $|z|=5$. This set is shown in blue on the plot.

Sections at 3 pm

Problem 1
Compute all fifth roots of unity.
Solution. For each natural number n there are exactly $n n$-th roots of unity, which can be expressed as:

$$
z_{k}=e^{i \frac{2 \pi}{n} k}, k=0,1, \ldots, n-1
$$

In our case $\mathrm{n}=5$, hence,

$$
z_{k}=e^{i \frac{2 \pi}{5} k}, k=0,1,2,3,4
$$

Thus, the 5 -th roots of 1 are:

$$
z_{0}=e^{i 0}=1, z_{1}=e^{i \frac{2 \pi}{5}}=i, z_{2}=e^{i \frac{i \pi}{5}}, z_{3}=e^{i \frac{6 \pi}{5}}, z_{4}=e^{i \frac{8 \pi}{5}}
$$

Answer: 1, $i,-1,-i$.

Problem 2

Find the complex polar representation of the complex number $z=3+3 i$.
Solution. We need to find such R and Θ that $z=3+3 i=R e^{i \Theta}$.

$$
R=|z|=\sqrt{3^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2} .
$$

Therefore,

$$
z=2 e^{i \Theta}=2\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)
$$

where Θ satisfies

$$
\cos \Theta=\frac{1}{\sqrt{2}}, \sin \Theta=\frac{1}{\sqrt{2}} \Rightarrow \Theta=\frac{\pi}{4} .
$$

Answer: $z=3 \sqrt{2} e^{i \pi / 4}$.

Problem 3

Write in polar coordinates the equation

$$
x^{2}+y^{2}=4 y
$$

Solution. In polar coordinates $x=r \cos \Theta, y=r \sin \Theta$. Hence,

$$
r^{2} \cos ^{2}(\Theta)+r^{2} \sin ^{2}(\Theta)=r^{2}=4 r \sin (\Theta)
$$

Answer: $r^{2}=4 r \sin (\Theta)$.

Problem 4

Sketch the graph of the polar equation

$$
r=5
$$

Solution. Since there is no restriction on Θ, it can take all possible values. Hence, the graph should contain all complex numbers $z=7 e^{i \Theta}$, i.e. all numbers with $|z|=7$. This set is shown in blue on the plot.

