MATH 141, FALL 2008, Final practice

1) Find the length of the graph of $f(x)=e^{x}+e^{-x}, 0 \leq x \leq 1$.
2) Find the area of the surface generated by revolving about the x-axis the curve with the following parametric representation: $x(t)=t^{2}, y(t)=t, 1 \leq t \leq 4$.
3) Let R be the region between the graphs of $f(x)=x^{3}$ and $g(x)=x^{2}$ on $[0,1]$. Find the center of gravity of R and the volume of the solid obatined by revolving R about the y-axis.
4) A tank containing 144π cubic feet of water has the shape of a cone with vertex at the botom, with height of 20 feet and radius of 10 feet. Find the work needed to pump all the water to a point 10 feet above the tank.
5) Find a maximal interval on which $f(x)=x^{3}$ has an inverse.
6) Find the limit

$$
\lim _{x \rightarrow 0} \frac{\arcsin (x)}{x}
$$

7) Solve the differential equation:

$$
\frac{d y}{d x}+y \sin (x)=\sin (x)
$$

8) Find the integral

$$
\int \frac{\cos (x)}{1+\sin ^{2}(x)} d x
$$

9) Find the integral

$$
\int x^{2} \log _{2}\left(x^{3}\right) d x
$$

10) Determine whether the improper integral converges. If it does, determine its value:

$$
\int_{-\infty}^{-2} \frac{1}{x^{2}+4} d x
$$

11) Find the interval of convergence of the series:

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{\left(\log _{2}(n)\right)^{2}}{n^{2}} x^{n}
$$

Explain which modes of convergence appear.
12) Determine whether the series converges

$$
\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}} .
$$

13) Find the Taylor series of $f(x)=\sin (x)$ at $a=\pi / 4$.
14) Find all 3rd roots of i.
15) Find the length of the polar curve $r=2 \cos (\theta)$ and the area bounded by this curve.
