
Remarks on digits classification project

Wojciech Czaja

November 16, 2015

Wojciech Czaja Introduction



Remarks on data representation

One of the main aspects of this project is the investigation of the
role the data representation plays in applications. This happens
in our project on two different levels:

1 The images can be represented as vectors. This is conceptually a
very non-trivial idea, but it is much easier in practice: since each
digital image is formed by a finite collection of numbers, it is all
about the order in which these coefficients are used. Please note
that the usps.mat data already presents the images as vectors
(reading the coefficients “column-wise”)1 . But there are many
other ways to do it (e.g., continuously column-wise,“row-wise”,
spiral, etc).

2 The data, understood as vectors, can be represented in different
forms. This can be done in the same space in which the original
data resides, by means of change of basis or other type of
transformation. This can also be done by representing data vectors
from RD in some other space Rd .

1This is essentially the content of part (2) of the project: all you have to do is to
decipher the meaning of “column-wise” :)

Wojciech Czaja Introduction



Remarks on data representation

For the first part, make sure you can access the data and view
the individual digits. The following command should allow you to
view the 5th digit 3 in the usps data:

load(’usps all.mat’);
figure;
imshow(reshape(data(:,5,3),[16 16]),[]);

Remember that the whole dataset is not something that you can
just “view” - it is 11K vectorized images.
Other representations of the images as vectors can be simply
identified as a permutation of the coordinates. But then you must
remember that the reshape function will no longer produce an
image of a digit. if your project analyzes different vectorization
schemes (as described in part 1 on the previous slide), you must
reverse that permutation before visually inspecting the digits.

Wojciech Czaja Introduction



Remarks on data representation

Once images are vectorized (whether as is done already in the
usps all.mat data set, or using your own idea), we can use them
directly in classification, or we can transform them, before we
apply the classification. This is the main component of, and the
difference between, parts (3) and (4):

1 In part (3) you are applying the classification to the “original”
vectorized data.

2 In part (4) you are applying the classification to data which is
transformed by eigenmaps of the graph Laplacian.

The “original” vectorized data consists of 11K vectors in R256.
The “transformed” data consists of 11K vectors in a possibly
different space:

1 If we compute D (D ≤ 11K ) eigenvectors of ∆, then we’ll have 11K
vectors in RD ;

2 If we happen to choose D = 256, then we’ll have 11K vectors in
R256;

3 But if we choose D = 11K , then we’ll have 11K vectors in R11K ;

Wojciech Czaja Introduction



Remarks on parameter selection

A parameter is a measurable factor that is used in defining any
particular model or system.
For the kNN classification problem, the parameters include: the
number of nearest neighbors, the distance function, the voting
method (if k > 1).
The way we vectorize images can also be considered to be a
parameter, because it is a function and, as such, it is a
measurable factor in our scheme.
In Graph Laplacian, parameters include: the number of
neighbors chosen in the construction of the adjacency matrix, the
weights (if we choose a weighted graph), the number D of
eigenvectors chosen for representation.

Wojciech Czaja Introduction



Remarks on parameter selection

Please note that you should either theoretically explain why a specific
choice of a parameter is the only one that makes sense, or you should
test what happens when you change the parameters over a certain
range. For example, for D, there is no ideal theoretical explanation
why a certain number of parameters will perfectly describe our data.
Clearly we should have D ≥ 10, as we are trying to classify 10 digits.
But it might be also larger numbers, as there are multiple ways of
writing certain digits. So you could list how many different ways of
writing 10 digits there are (illustrating them with examples from the
data). Or you could test D = 10,20,30, etc. This is going to lead to
higher computational costs, as you need to repeat all computations
with multiple different choices for D. The choice is yours.

Wojciech Czaja Introduction



Remarks on computational costs

There are two major cost generating components of our project:
1 Sorting distances for kNN classification.
2 Computing eigenvectors of Graph Laplacian.

For these you should use existing matlab functions. If you are not
careful, you can easily produce implementations which cost on
the order of O(n3), or more. For n = 11,000, this would imply on
the order of 1.3× 1012 basic operations (or a constant multiple of
it). Good laptops are capable of about 100 GFLOPs, i.e., 1011

basic operations. This indicates 13 seconds (or a multiple of) at
peak efficiency, for just one aspect of our computations. It is OK
for a single run, but sub-ideal for multiple iterations.

Wojciech Czaja Introduction



Remarks on computational costs
This is why any idea that can shed some unnecessary computations
should be considered:

When filling up a large adjacency or degree matrix, do not
perform unnecessary computations for symmetric terms, i.e., set:
A(i,j) = A(j,i) = distance (V(i);V(j)), for i = 1 to n, and for j=i +1 to n,
rather than for the full n × n matrix.
In the vectorization step, you can observe that a number of pixel
positions across all images are significantly underutilized - one
can get rid of them and reduce the computations without any
significant impact on the results.
Instead of computing all eigenvectors of ∆, compute only D + 1
of them, for a number D significantly smaller than 11K. Then use
the following scheme: Discard the constant eigenvector of the 0
eigenvalue2. Utilize the remaining D eigenvectors to embed your
data in a D-dimensional Euclidean space using the map
V (i) 7→ (e1(i),e2(i), . . . ,eD(i)), where ej (i) represents ith
coordinate of jth eigenvector.

2It is a good exercise to find out why a constant vector is an eigenvector of the 0
eigenvalue for graph Laplacian

Wojciech Czaja Introduction



Remarks on computational costs

The last step of choosing only D eigenvectors for D = 20,30, etc,
significantly reduces your computational costs by:

1 reducing the time needed to compute eigenvectors - it is approx.
500 times faster to computer 20 eigenvectors than to compute
10,000 eigenvectors;

2 reducing the number of computations needed in classification - the
distances are computed for much shorter vectors;

3 simplifying the problem of training the optimal parameters.

Additional savings can be achieved by sparsifying the graph: is
we limit the number of edges connecting any node to the rest of
the graph, then we will obtained an adjacency matrix with many
zeros. (This is something that Matlab functions like very much.)
For example, choosing a fixed number M of the shortest (most
significant) edges for each node, and deleting all others,
introduces 11,000 - 2M zeros in each row of the adjacency
matrix.3

3Note that these connected nodes are called neighbors in literature - do not confuse
with the neighbors in the kNN classification.

Wojciech Czaja Introduction



Remarks on classification

You do not need to separate the dataset into two separate
subsets in the training/testing split. The selection of the training
set can be done by simply selecting the indices of the
appropriate rows of the usps all.mat dataset. Then, we can
operate always on the same data matrix, without the need to use
additional memory. Moreover, this trick helps in identifying the
training vs testing points in the Laplacian representation: if you
choose the vector with index i to be an element of the training
set, then you will also use the i th vector
(e1(i),e2(i), . . . ,eD(i)) ∈ RD, to be an element of the training set.
How well your classification performed is measured by the
percentage of correctly labeled (classified) elements of the
testing set. That is, if 3300 images out of 5500 were classified
correctly, then we say that our classification accuracy is 60%.
This is better than if the rate was, e.g., 40%. The goal is to come
up with highest possible success rate for problems (3) and (4)
separately, and then to compare these results, and draw
conclusions.

Wojciech Czaja Introduction



Remarks on classification

When you check the classification accuracy on the testing set,
please use the earlier instructions to view examples of the
corresponding digits which were correctly and incorrectly
classified. If they were classified incorrectly, check what was the
classification and try to see if you understand why was the digit
misclassified. Try to use this information to improve your results.
It is a good practice to run several different selections of the
training set to ensure that our classification is not too dependent
on the training (this is called overfitting the data).

Wojciech Czaja Introduction



Remarks on Laplacian Eigenmaps

One of the original sets of slides presented an algorithm called
Laplacian Eigenmaps (LE). This algorithm is NOT a solution to your
project. This means that you cannot download DR Toolbox, run it on
digits data and include in your project. This is because, if you look
carefully, you will notice that LE solves a different eigenvalue problem
(called generalized eigenvalue problem). There are also other smaller
differences: the graph weights are different, the graph Laplacian is
defined as D − A, etc.
However, notwithstanding these differences, the algorithm and the
code published for LE can be very helpful for your own construction!

Wojciech Czaja Introduction



Last but not least

Too many instructions can make the problem
look more complicated than it really is.

This is a beautiful problem, with a goal that is very intuitive, and which
allows you to visually inspect your results. This can help you
understand what you are doing mathematically at each step. Be
creative.

Wojciech Czaja Introduction


