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From data to operators

Given is data set X consisting of N vectors xn ∈ RD. Without loss
of generality, assume

∑
xn = 0 (subtract mean).

Let P be D × N matrix whose columns are the data vectors xn.
Let H = span{xn}N

n=1 ⊆ RD. Define L : H→ RN ,

v 7→ P∗v = L(v) = {〈v , xn〉} ∈ RN ,

and its adjoint L∗ : RN → H ⊆ RD,

w 7→ L∗(w) =
N∑

n=1

w [n]xn, w = (w [1],w [2], . . . ,w [N]).

L is called the Bessel (analysis) operator, and L∗ is called the
synthesis operator.
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Derivation of Covariance

The frame operator S can be written as

S : H→ H, v 7→
N∑

n=1

〈v , xn〉xn = (PP∗)v ,

where PP∗ is D × D.
Hence, up to a scaling factor (of 1/N) and a translation (mean
subtraction), S is the linear operator identified with the D × D
symmetric covariance matrix C = 1

N PP∗ of the data X , i.e.

C =
1
N

 N∑
j=1

xj [m]xj [n]

D

m,n=1

, xj = (xj [1], . . . , xj [D]) ∈ RD.
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Principal Component Analysis

The covariance matrix C we have just defined is certainly
symmetric and also positive semidefinite, since for every vector
y , we have

〈y ,Cy〉 =
1
N

N∑
j=1

|〈y , xj〉|2 ≥ 0.

Thus, C can be diagonalized, and its eigenvalues are all
nonnegative. If K denotes the orthogonal matrix that
diagonalizes C, then we have that K ∗CK is diagonal and the
whole process of analyzing data using the eigenbasis of
covariance matrix is known as Principal Component Analysis
(PCA). K is also known as principal orthogonal decomposition,
Hoteling transform, or Karhunen-Loève transform.
The columns of K are the eigenvectors of C. The number of
positive eigenvalues is the actual number of uncorrelated
parameters, or degrees of freedom in the original data set X .
Each eigenvalue represents the variance of its degree of
freedom.
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Illustration of Principal Component Analysis

The following plot contains a collection of points obtained from a
multivariate Gaussian distribution centered at (1,3) with a standard
deviation of 3 in the (0.878, 0.478) direction, and of 1 in the
orthogonal direction. The vectors shown are the eigenvectors of the
covariance matrix scaled by the square root of the corresponding
eigenvalue, and shifted so their tails are at the mean.

Source of imagery: Wikipedia
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Data perspective

We shall now present a different, data-inspired, model for PCA.
Assume we have D observed (measured) variables:
y = [y1, . . . , yD]T . This is our data.
Assume we know that our data is obtained by a linear
transformation W from d unknown variables x = [x1, . . . , xd ]T :

y = W (x).

Typically we assume d < D.
Assume, moreover, that the D × d matrix W is a change of a
coordinate system, i.e., columns of W (or rows of W T ) are
orthonormal to each other:

W T W = Idd .

Note that WW T need not be an identity matrix.
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PCA

Given the above assumptions the problem of PCA can be stated as
follows:

How can we find the transformation W
and the dimension d from a finite number of measurements y?

We shall need 2 additional assumptions:
Assume that the unknown variables are Gaussian;
Assume that both the unknown variables and the observations
have mean zero (this is easily guaranteed by subtracting the
mean, or the sample mean).
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PCA minimizing the reconstruction error

For a noninvertible matrix, we have its pseudoinverse defined as

W+ = (W T W )−1W T

In our case, W+ = W T , Thus, if y = Wx , we have

WW T y = WW T Wx = WIddx = y ,

or, equivalently,
y −WW T y = 0.

With the presence of noise, we cannot assume anymore the perfect
reconstruction, hence, we shall minimize the reconstruction error
defined as

Ey (‖y −WW T y‖2
2).

It is not difficult to see that

Ey (‖y −WW T y‖2
2) = Ey (yT y)− Ey (yT WW T y).
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PCA from minimizing the reconstruction error

As Ey (yT y) is constant, our minimization of error reconstruction turns
into a maximization of Ey (yT WW T y). In reality, we known little about
y , so we have to rely on the measurements y(k), k = 1, . . . ,N. Then,

Ey (yT WW T y) ∼ 1
N

N∑
n=1

(y(n))T WW T (y(n)) ∼ 1
N

tr(Y T WW T Y ),

where Y is the matrix whose columns are the measurements y(n)
(hence Y is a D × N matrix).
Using Singular Value Decomposition (SVD) for Y : Y = V ΣUT , we
obtain:

Ey (yT WW T y) ∼ 1
N

tr(UΣT V T WW T V ΣUT ).

Therefore, after some computations we obtain:

argmaxW Ey (yT WW T y) ∼ V IdD×d .

Thus, we have that W ∼ V IdD×d , and so x ∼ Idd×DV T y .
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PCA from maximizing the decorrelation

Another approach to PCA is by assuming that the unknown variables
are uncorrelated (in a statistical sense). This can boil down in
practice to the assumption that the covariance matrix C is diagonal.
Since the observed measurements are often corrupted, we may write

Cy = E(yyT ) = E(WxxT W T ) = WE(xxT )W T = WCxW T .

Alternatively, because of the orthogonality in W , we have

Cx = W T Cy W .

Now, we use eigendecomposition of Cy (since we can), to write
Cy = V ΛV T . This leads to

Cx = W T V ΛV T W .

This equality can hold only when W = V IdD×d . Hence, again
x = Idd×DV T y .
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Summary

To summarize, we have presented two different approaches which
lead to the same result:

If we assume that our data Y consists of N measurements
y(n) ∈ RD,n = 1, . . . ,N and is obtained by an orthogonal
transformation W from N (a priori) unknown measurements
x(n) ∈ Rd ,n = 1, . . . ,N, with d < D (represented by a d × N matrix
X ) such that :

Y = W (X ),

and if we make some further auxiliary assumptions, then we can we
find the variables X , the transformation W , and the dimension d from
N measurements Y by letting

X = Idd×DV T Y ,

where V comes from SVD of Y and d is the number of nonzero
singular values of Y .
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