
Math 410. HW 3 Solutions

1. Let ε > 0. Let δ > 0 be such that the only point of D in the interval (x0− δ, x0 + δ) is x0. If
x ∈ D and |x− x0| < δ, then x = x0 and thus |f(x)− f(x0)| = 0 < ε. Then f is continuous
at x0.

2. From the definition of derivative, f ′(0) = limy→0
f(y)−f(0)

y . Let 0 < δ < 1 be such that

whenever |y| < δ, | f(y)−f(0)
y − f ′(0)| < ε/2.

Let x ∈ (−
√
δ,
√
δ). Then |x2| < δ and so | f(x2)−f(0)

x2 − f ′(0)| < ε/2. Multiplying by |x| and

using that |x| < δ < 1 we have that | f(x2)−f(0)
x − f ′(0)x| < ε/2. Therefore, by the triangle

inequality, | f(x2)−f(0)
x | < |f ′(0)x|+ ε/2.

If f ′(0) 6= 0, let δ̃ = min{δ, ε
2|f ′(0)|}. Then, | f(x2)−f(0)

x | < |f ′(0)x| + ε/2 ≤ ε/2 + ε/2 = ε.

If f ′(0) = 0 we obtain directly that | f(x2)−f(0)
x | < ε/2. In both cases this implies that

limx→0
f(x2)−f(0)

x = 0.

3. First note that f(0) = 0. Then, f(h)−f(0)
h =

{
h2 if h ∈ Q
−h2 if h /∈ Q

.

Therefore limh→0
f(h)−f(0)

h = 0 so f is differentiable at 0, and f ′(0) = 0.

4. We will show that f ′(x) = 0 for all x ∈ R. Assume this is not the case and let x0 ∈ R be
such that f ′(x0) 6= 0.

First suppose f ′(x0) > 0. Since f ′′(x) ≥ 0 for all x, we know that f ′ is non-decreasing. In
particular, for every x ≥ x0 we have f ′(x) ≥ f ′(x0) > 0. Let x1 = x0 + 1−f(x0)

f ′(x0)
. We claim

that f(x1) ≥ 1. Indeed, since f(x0) ≤ 0 and f ′(x0) > 0, x1 > x0. By the Mean Value
Theorem, the exists some z ∈ [x0, x1] such that f ′(z) = f(x1)−f(x0)

x1−x0
. Therefore,

f(x1) = f(x0) + f ′(z)(x1−x0) = f(x0) + f ′(z)(
1− f(x0)
f ′(x0)

) ≥ f(x0) + f ′(x0)(
1− f(x0)
f ′(x0)

) = 1.

This contradicts the assumption that f(x) ≤ 0 for all x ∈ R.

We can apply the same reasoning to show that there is no x0 such that f ′(x0) < 0. Suppose
f ′(x0) < 0. Using that f ′ is non-decreasing, we know that for every x ≤ x0 we have
f ′(x) ≤ f ′(x0) < 0. Let x1 = x0 + 1−f(x0)

f ′(x0)
. We claim that f(x1) ≥ 1. Indeed, since f(x0) ≤ 0

and f ′(x0) < 0, x1 < x0. By the Mean Value Theorem, the exists some z ∈ [x1, x0] such that
f ′(z) = f(x1)−f(x0)

x1−x0
. Therefore,

f(x1) = f(x0) + f ′(z)(x1−x0) = f(x0) + f ′(z)(
1− f(x0)
f ′(x0)

) ≥ f(x0) + f ′(x0)(
1− f(x0)
f ′(x0)

) = 1.

This contradicts the assumption that f(x) ≤ 0 for all x ∈ R. Hence, there is no x0 such that
f ′(x0) < 0.

Combining the two parts, we conclude that f ′(x) = 0 for all x ∈ R. This implies that f is
constant.

5. Let m,M ∈ {1, . . . , k} be such that

f(xm) = min{f(x1), . . . , f(xk)} and f(xM ) = max{f(x1), . . . , f(xk)}.

Then, f(xm) ≤ f(x1)+···+f(xk)
k ≤ f(xM ). By the Intermediate Value Theorem, there exists a

point z ∈ [min{xm, xM},max{xm, xM}] ⊂ [a, b] such that f(z) = f(x1)+···+f(xk)
k .


