MATH 416, Spring 10, Midterm 1 Review

1. We say that a collection of vectors $\left\{e_{1}, \ldots, e_{n}\right\} \subset \mathbb{R}^{d}, n \geq d$ is a spanning set for \mathbb{R}^{d} if every vector in \mathbb{R}^{d} can be represented as a linear combination of vectors $\left\{e_{1}, \ldots, e_{n}\right\}$. We say that a collection of vectors $\left\{f_{1}, \ldots, f_{n}\right\} \subset \mathbb{R}^{d}, n \geq d$ is a finite frame for \mathbb{R}^{d} if there exist constants $A, B>0(A<B)$ such that for every vector $x \in \mathbb{R}^{d}$ the following holds:

$$
A\|x\|^{2} \leq \sum_{k=1}^{n}\left|\left\langle x, f_{k}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

Show that every finite spaning set for \mathbb{R}^{d} is a frame for \mathbb{R}^{d}.
2. With the definitions of Problem 1 , show that every finite frame $\left\{f_{1}, \ldots, f_{n}\right\} \subset$ \mathbb{R}^{d}, for $\mathbb{R}^{d}, n \geq d$, is a spanning set for \mathbb{R}^{d}.
3. Prove that $\|x-y\| \geq \mid\|x\|-\|y\| \|$ for any vectors x, y in a normed vector space.
4. Find the 1-periodization of the function $f(x)=e^{-|x|}$.
5. For real $\epsilon>0$ and α, define the dilation operator D_{ϵ} and the translation operator T_{α}, which act on functions $f=f(t)$ of one real variable as follows:

$$
T_{\alpha}(u)(t)=u(t-\alpha) \quad D_{\epsilon}(u)(t)=\epsilon^{-1 / 2} u(t / \epsilon)
$$

a) Show that these are linear transformations with inverses $T_{\alpha}^{-1}=T_{-\alpha}$ and $D_{\epsilon}^{-1}=$ $D_{1 / \epsilon}$
b) Compute the composition $T_{\alpha}\left(D_{\epsilon}(F)\right)$ for a function $F=F(x)$.
6. Show that the set of functions $\{1, \sqrt{2} \sin (2 \pi n t), \sqrt{2} \cos (2 \pi n t): n=1,2,2 \ldots\}$ is orthonormal with respect to the Hermitean inner product.
7. Show that the set of functions $\{\sqrt{2} \sin (2 \pi n t): n=1,2,3, \ldots\}$ is orthonormal with respect to the real inner product.
8. Show that the set of functions $\{1, \sqrt{2} \cos (2 \pi n t): n=1,2,3, \ldots\}$ is orthonormal with respect to the real inner product.
9. Compute the sine-cosine Fourier series of the 1-periodic function $f(x)=\cos ^{2}(2 \pi x)$.
10. Compute the complex exponential Fourier series of the 1-periodic function $\sin (2 \pi k t-d)$, where d is a constant real number, and k is an integer.

