MATH 416, Spring 10, Midterm 1 Review

1. We say that a collection of vectors $\{e_1, \ldots, e_n\} \subset \mathbb{R}^d$, $n \geq d$ is a spanning set for \mathbb{R}^d if every vector in \mathbb{R}^d can be represented as a linear combination of vectors $\{e_1, \ldots, e_n\}$. We say that a collection of vectors $\{f_1, \ldots, f_n\} \subset \mathbb{R}^d$, $n \geq d$ is a finite frame for \mathbb{R}^d if there exist constants A, B > 0 (A < B) such that for every vector $x \in \mathbb{R}^d$ the following holds:

$$A||x||^2 \le \sum_{k=1}^n |\langle x, f_k \rangle|^2 \le B||x||^2.$$

Show that every finite spaning set for \mathbb{R}^d is a frame for \mathbb{R}^d .

2. With the definitions of Problem 1, show that every finite frame $\{f_1, \ldots, f_n\} \subset \mathbb{R}^d$, for \mathbb{R}^d , $n \geq d$, is a spanning set for \mathbb{R}^d .

- 3. Prove that $||x y|| \ge ||x|| ||y|||$ for any vectors x, y in a normed vector space.
- 4. Find the 1-periodization of the function $f(x) = e^{-|x|}$.

5. For real $\epsilon > 0$ and α , define the dilation operator D_{ϵ} and the translation operator T_{α} , which act on functions f = f(t) of one real variable as follows:

$$T_{\alpha}(u)(t) = u(t - \alpha) \quad D_{\epsilon}(u)(t) = \epsilon^{-1/2} u(t/\epsilon).$$

a) Show that these are linear transformations with inverses $T_{\alpha}^{-1} = T_{-\alpha}$ and $D_{\epsilon}^{-1} = D_{1/\epsilon}$

b) Compute the composition $T_{\alpha}(D_{\epsilon}(F))$ for a function F = F(x).

6. Show that the set of functions $\{1, \sqrt{2}\sin(2\pi nt), \sqrt{2}\cos(2\pi nt) : n = 1, 2, 2...\}$ is orthonormal with respect to the Hermitean inner product.

7. Show that the set of functions $\{\sqrt{2}\sin(2\pi nt) : n = 1, 2, 3, ...\}$ is orthonormal with respect to the real inner product.

8. Show that the set of functions $\{1, \sqrt{2}\cos(2\pi nt) : n = 1, 2, 3, ...\}$ is orthonormal with respect to the real inner product.

9. Compute the sine-cosine Fourier series of the 1-periodic function $f(x) = \cos^2(2\pi x)$.

10. Compute the complex exponential Fourier series of the 1-periodic function $\sin(2\pi kt - d)$, where d is a constant real number, and k is an integer.