MATH 416, HW 2

1. We say that a collection of vectors $\left\{f_{1}, \ldots, f_{n}\right\} \subset \mathbb{R}^{d}, n \geq d$ is a strong finite frame for \mathbb{R}^{d} if there exist constants $0<A<B<\infty$ such that for every vector $x \in \mathbb{R}^{d}$ the following holds:

$$
A\|x\|^{2} \leq \sum_{k=1}^{n}\left|\left\langle x, f_{k}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

We say that a collection of vectors $\left\{f_{1}, \ldots, f_{n}\right\} \subset \mathbb{R}^{d}, n \geq d$ is a finite frame for \mathbb{R}^{d} if there exist constants $0<A \leq B<\infty$ such that for every vector $x \in \mathbb{R}^{d}$ the following holds:

$$
A\|x\|^{2} \leq \sum_{k=1}^{n}\left|\left\langle x, f_{k}\right\rangle\right|^{2} \leq B\|x\|^{2} .
$$

Prove that the two definitions coincide, i.e., prove that every strong finite frame is a finite frame, and, vice versa, that every finite frame is a strong finite frame.
2. Implement in Matlab the 32×32 DFT as a matrix multiplication. Apply it to the following vectors: $v_{1}(k)=\sin (2 \pi k / 32), k=0, \ldots, 31, v_{2}(k)=\sin (4 \pi k / 32), k=$ $0, \ldots, 31, v_{3}(k)=\cos (2 \pi k / 32), k=0, \ldots, 31$. Plot the results in form of a function graph. Draw conclusions.
3. Implement in Matlab the 32×32 DFT by means of FFT algorithm. Apply it to the following vectors: $v_{1}(k)=\sin (2 \pi k / 32), k=0, \ldots, 31, v_{2}(k)=\sin (4 \pi k / 32), k=$ $0, \ldots, 31, v_{3}(k)=\cos (2 \pi k / 32), k=0, \ldots, 31$. Plot the results in form of a function graph. Draw conclusions.
4. Show that the vectors $\omega_{n} \in \mathbb{C}^{N}$ defined as $\omega_{n}(k)=\frac{1}{\sqrt{N}} e^{2 \pi i n k / N}$ form an orthonormal basis for \mathbb{C}^{N} with respect to inner product

$$
\langle v, w\rangle=\sum_{k=1}^{N} v(k) \overline{w(k)} .
$$

