MATH 416, Spring 10, Midterm 2 Review

1. Write explicitely the matrix of a 4×4 DFT. Apply it to a vector $(0,1,0,-1)$.
2. Find the Lagrange polynomial through points $(1,2),(2,5),(3,4)$.
3. Suppose that $f(x)=m x$ for some constant m. Show that for any sampling of f, the piecewise linear approximation exactly equals f.
4. Show that the set of functions $\{\sqrt{2} \sin (\pi n t): n=1,2,3, \ldots\}$ is orthonormal with respect to the real inner product which is defined as: $\langle f, g\rangle=\sum_{k=0}^{N-1} f(k) g(k)$.
5. Show that the set of vectors $\omega_{n} \in \mathbb{C}^{N}, n=0, \ldots, N-1$, where $\omega_{n}(k)=$ $1 / \sqrt{N} e^{2 \pi i n k / N}$, is an orthonormal basis for \mathbb{C}^{N} with respect to the complex inner product which is defined as: $\langle f, g\rangle=\sum_{k=0}^{N-1} f(k) \overline{g(k)}$.
6. Write explicitely the matrix of a 5×5 DCT III. Apply it to a vector $(1,0,-1,0,1)$.
7. What is the matrix of the square of $N \times N$ DFT?
8. What is the matrix of the $N \times N$ inverse DCT-IV transform?
9. Find the expansion in Chebyshev polynomials $T_{0}(x), T_{1}(x), T_{2}(x)$ of the function $f(x)=1+x^{2}$ dened for $x \in[-1,1]$.
10. Prove that the $N \times N$ discrete Hartley transform matrix is symmetric and unitary.
