MATH 416, Spring 10, Midterm 2 Review

1. Write explicitly the matrix of a 4×4 DFT. Apply it to a vector (0, 1, 0, -1).

2. Find the Lagrange polynomial through points (1, 2), (2, 5), (3, 4).

3. Suppose that f(x) = mx for some constant m. Show that for any sampling of f, the piecewise linear approximation exactly equals f.

4. Show that the set of functions $\{\sqrt{2}\sin(\pi nt) : n = 1, 2, 3, ...\}$ is orthonormal with respect to the real inner product which is defined as: $\langle f, g \rangle = \sum_{k=0}^{N-1} f(k)g(k)$.

5. Show that the set of vectors $\omega_n \in \mathbb{C}^N$, $n = 0, \ldots, N - 1$, where $\omega_n(k) = 1/\sqrt{N}e^{2\pi i nk/N}$, is an orthonormal basis for \mathbb{C}^N with respect to the complex inner product which is defined as: $\langle f, g \rangle = \sum_{k=0}^{N-1} f(k)\overline{g(k)}$.

- 6. Write explicitly the matrix of a 5×5 DCT III. Apply it to a vector (1, 0, -1, 0, 1).
- 7. What is the matrix of the square of $N \times N$ DFT?
- 8. What is the matrix of the $N \times N$ inverse DCT-IV transform?

9. Find the expansion in Chebyshev polynomials $T_0(x), T_1(x), T_2(x)$ of the function $f(x) = 1 + x^2$ dened for $x \in [-1, 1]$.

10. Prove that the $N \times N$ discrete Hartley transform matrix is symmetric and unitary.