MATH 416, Spring 2010, Midterm 3 - Review

1. Write explicitly the 4×4 matrix of the Discrete Haar transform. Apply this matrix to vector $(1,0,1,0)$.
2. Let $\{h(k): k=0, \ldots, L\},\{g(k): k=0, \ldots, L\}$ be a pair of Conjugate Quadrature Mirror Filters of nite length $L+1<\infty$. Let $c \in \mathbb{R}^{d}(d>L, d$ even). Let $H(c)(n)=\sum_{k} h(k) c(k+2 n)$ and $G(c)(n)=\sum_{k} g(k) c(k+2 n)$. Thus, H and G can be identified with $(d / 2) \times d$ matrices. Let A^{*} denote the adjoint to A. Show that $H H^{*}=G G^{*}=I d$.
3. Let $\{h(k): k=0, \ldots, L\},\{g(k): k=0, \ldots, L\}$ be a pair of Conjugate Quadrature Mirror Filters of nite length $L+1<\infty$. Let $c \in \mathbb{R}^{d}(d>L, d$ even). Let $H(c)(n)=\sum_{k} h(k) c(k+2 n)$ and $G(c)(n)=\sum_{k} g(k) c(k+2 n)$. Thus, H and G can be identified with $(d / 2) \times d$ matrices. Let A^{*} denote the adjoint to A. Show that $H G^{*}=G H^{*}=0$.
4. Show that if M is an arbitrary integer and if $\{h(k): k=0, \ldots, L\}$ is a Quadrature Mirror Filter, then so is the sequence

$$
g(k)=(-1)^{k} \overline{h(2 M-1-k)} .
$$

5. Prove that the $N \times N$ matrix of the Discrete Haar Transform is unitary.
6. Find the Lagrange polynomial through the points $(1,1),(2 ; 2),(3 ; 3)$.
7. Find the expansion in Chebyshev polynomials $T_{0}(x), T_{1}(x), T_{2}(x)$ of the function $f(x)=1+x^{2}$ dened for $x \in[-1,1]$.
8. Suppose that $f(x)=c$ is a constant function. Show that for any sampling of f, the piecewise linear approximation exactly equals f.
