Problem 1. Suppose that the collection of vectors $\left\{f_{1}, \ldots, f_{n}\right\}$ is a strong finite frame. Then there exist constants $A<B$ which obviously satisfy the inequality $A \leq B$ so every strong finite frame is a finite frame;
now suppose that $\left\{f_{1}, \ldots, f_{n}\right\}$ is a finite frame. Then we have constants $A \leq B$. To obtain constants A_{1}, B_{1} s.t. $A<B$ we may either decrease A or increase B (take $A_{1}=A<B+1=B_{1}$ for example). Thus it is possible to find constants satisfying a strong finite frame condition.

Problem 2. Here is a sample code written in Matlab: $\mathrm{N}=32$; (see the attachement).
Problem 3. FFT algorithm code was based on the pseudocode given on the page 95 of "Mathematics for Multimedia" .

Problem 4. To show that given vectors form the orthonormal we prove that $<\omega_{m}, \omega_{n}>$ is 1 for $m=n$ (the norm) and 0 otherwise:

$$
\begin{aligned}
&<\omega_{n}, \omega_{n}>= \sum_{k=1}^{N} \frac{1}{\sqrt{N}}(\cos (2 \pi n k / N)+i \sin (2 \pi n k / N)) \frac{1}{\sqrt{N}}(\cos (2 \pi n k / N)-i \sin (2 \pi n k / N))= \\
&=\sum_{k=1}^{N} \frac{1}{N}\left(\cos ^{2}(2 \pi n k / N)-i^{2} \sin ^{2}((2 \pi n k / N))=\frac{1}{N} \sum_{k=1}^{N} 1=N / N=1\right. \\
&<\omega_{m}, \omega_{n}>=\sum_{k=1}^{N} \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}} e^{2 \pi i(n-m) k}=(\text { as the sum of the N-th roots of unity })=0
\end{aligned}
$$

Which concludes the proof.

