Problem 1. Suppose that the collection of vectors $\{f_1, ..., f_n\}$ is a strong finite frame. Then there exist constants A < B which obviously satisfy the inequality $A \leq B$ so every strong finite frame is a finite frame;

now suppose that $\{f_1, ..., f_n\}$ is a finite frame. Then we have constants $A \leq B$. To obtain constants A_1, B_1 s.t. A < B we may either decrease A or increase B (take $A_1 = A < B+1 = B_1$ for example). Thus it is possible to find constants satisfying a strong finite frame condition.

Problem 2. Here is a sample code written in Matlab: N=32; (see the attachement).

Problem 3. FFT algorithm code was based on the pseudocode given on the page 95 of "Mathematics for Multimedia".

Problem 4. To show that given vectors form the orthonormal we prove that $\langle \omega_m, \omega_n \rangle$ is 1 for m = n (the norm) and 0 otherwise:

$$<\omega_n, \omega_n >= \sum_{k=1}^N \frac{1}{\sqrt{N}} (\cos(2\pi nk/N) + i\sin(2\pi nk/N)) \frac{1}{\sqrt{N}} (\cos(2\pi nk/N) - i\sin(2\pi nk/N)) =$$
$$= \sum_{k=1}^N \frac{1}{N} (\cos^2(2\pi nk/N) - i^2\sin^2((2\pi nk/N))) = \frac{1}{N} \sum_{k=1}^N 1 = N/N = 1$$

 $\langle \omega_m, \omega_n \rangle = \sum_{k=1}^N \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}} e^{2\pi i (n-m)k} =$ (as the sum of the N-th roots of unity) = 0

Which concludes the proof.