Problem 1. Evaluate the interpolants at the given points:

$$
\begin{gathered}
\lambda_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2} \\
\lambda_{2}(x)=\frac{(x-1)(x-3)}{(2-1)(2-3)}=\frac{(x-1)(x-3)}{-1} \\
\lambda_{3}(x)=\frac{(x-1)(x-2)}{(3-1)(3-2)}=\frac{(x-1)(x-2)}{2} \\
y_{1}=2 \\
y_{2}=5 \\
y_{3}=4
\end{gathered}
$$

So finally the answer is:

$$
f(x)=(x-2)(x-3)-5(x-1)(x-3)+2(x-1)(x-2)
$$

Problem 2. Note that first three Chebyshev polynomials are:

$$
\begin{gathered}
q_{0}=1 \\
q_{1}=x \\
q_{2}=2 x^{2}-1
\end{gathered}
$$

Writing the approximating sum as follows

$$
f(x)=1+x^{2}=c_{0} q_{0}+c_{1} q_{1}+c_{2} q_{2}=\left(c_{0}-c_{2}\right)+c_{1} x+2 c_{2} x^{2}
$$

yields the following system:

$$
\left\{\begin{array}{c}
c_{0}-c_{2}=1 \\
c_{1}=0 \\
2 c_{2}=1
\end{array}\right.
$$

which gives us $c_{0}=3 / 2, c_{1}=0, c_{2}=1 / 2$.
Alternatively you may use the explicit formula for finding $c(i)$ using the values of the function at Chebyshev nodes.

Problem 3. Consider the polynomial f of degree n.
First, compute vectors x and $f(x)$:
for $\mathrm{k}=1: \mathrm{n}+1$
$\mathrm{x}(\mathrm{k})=\cos \left(\mathrm{pi}{ }^{*}(\mathrm{k}-1+0.5) /(\mathrm{n}+1)\right)$;
$\mathrm{F}(\mathrm{k})=\mathrm{f}(\mathrm{x}(\mathrm{k}))$;
end;
Second, compute the corresponding T_{n} and $T_{n}(x)$:
for $\mathrm{k}=1: 2$
$\mathrm{T}(\mathrm{k})=\cos \left((\mathrm{k}-1)^{*} \operatorname{acos}(\mathrm{a})\right) ;$
end;
for $\mathrm{k}=3: \mathrm{n}+1$
$\mathrm{T}(\mathrm{k})=2^{*} \mathrm{a}^{*} \mathrm{~T}(\mathrm{k}-1)-\mathrm{T}(\mathrm{k}-2)$;
end;
Finally, compute the coefficients c_{n} :
$\mathrm{c}(1)=(1 /(\mathrm{n}+1)){ }^{\text {sum }}(\mathrm{F})$;
for $\mathrm{k}=2: \mathrm{n}+1$
$\mathrm{c}(\mathrm{k})=(1 /((\mathrm{n}+1) / 2)){ }^{*} \operatorname{sum}(\mathrm{~F} . * \operatorname{subs}(\mathrm{~T}(\mathrm{k}), \mathrm{a}, \mathrm{x})) ;$
end;
Problem 4. Let $\left\{x_{k}\right\}_{k=1}^{N}$ be the sampling of the interval. The linear approximation on any given subinterval would be:

$$
\frac{y_{k}\left(x-x_{k-1}\right)+y_{k-1}\left(x_{k}-x\right)}{x_{k}-x_{k-1}}=\frac{C\left(x-x_{k-1}\right)+C\left(x_{k}-x\right)}{x_{k}-x_{k-1}}=C \frac{x_{k}-x_{k-1}}{x_{k}-x_{k-1}}=C
$$

which exactly equals f .

