MATH 648 Q, HW 1

1) Show that the limit of the ratio of *D*-dimensional volumes of a cube of side 2r and a ball of radius *r* inscribed in the cube, is 0 when r > 0 is fixed and $D \to \infty$.

Note that the cube is in fact a ball in \mathbb{R}^D equipped with the ℓ^{∞} metric (i.e., $||x||_{\infty} = \max(|x_1|, \ldots, |x_D|)$), compared to the standard ball being a ball in the Euclidean metric ℓ^2 ($||x||_2^2 = \sum_{j=1}^D |x_j|^2$).

What is the limit of the ratio of volumes of balls in ℓ^2 and ℓ^1 metrics, respectively, when r > 0 is fixed and $D \to \infty$? (Here $||x||_1 = \sum_{j=1}^{D} |x_j|$.)

What about the ratios of volumes of balls in any ℓ^p and ℓ^q metrics?

2) Show that the ratio of the volume of an ϵ spherical shell of radius r (i.e., volume of the set of $x \in \mathbb{R}^D$ for which $r(1-\epsilon) \leq ||x||_2 \leq r$) and the volume the ball of radius r converges to 1 when r > 0 is fixed and $D \to \infty$.

What can you say about the limits of such ratios, when ℓ^2 norm is replaced with ℓ^{∞} and ℓ^1 , respectively?