MATH 648 Q, HW 1

1) Show that the limit of the ratio of D-dimensional volumes of a cube of side $2 r$ and a ball of radius r inscribed in the cube, is 0 when $r>0$ is fixed and $D \rightarrow \infty$.

Note that the cube is in fact a ball in \mathbb{R}^{D} equipped with the ℓ^{∞} metric (i.e., $\|x\|_{\infty}=$ $\left.\max \left(\left|x_{1}\right|, \ldots,\left|x_{D}\right|\right)\right)$, compared to the standard ball being a ball in the Euclidean metric $\ell^{2}\left(\|x\|_{2}^{2}=\sum_{j=1}^{D}\left|x_{j}\right|^{2}\right)$.

What is the limit of the ratio of volumes of balls in ℓ^{2} and ℓ^{1} metrics, respectively, when $r>0$ is fixed and $D \rightarrow \infty$? (Here $\|x\|_{1}=\sum_{j=1}^{D}\left|x_{j}\right|$.)

What about the ratios of volumes of balls in any ℓ^{p} and ℓ^{q} metrics?
2) Show that the ratio of the volume of an ϵ spherical shell of radius r (i.e., volume of the set of $x \in \mathbb{R}^{D}$ for which $\left.r(1-\epsilon) \leq\|x\|_{2} \leq r\right)$ and the volume the ball of radius r converges to 1 when $r>0$ is fixed and $D \rightarrow \infty$.

What can you say about the limits of such ratios, when ℓ^{2} norm is replaced with ℓ^{∞} and ℓ^{1}, respectively?

