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Anisotropic Harmonic Analysis

Harmonic analysis decomposes signals into simpler elements
called analyzing functions.
Classical HA methods include Fourier series and aforementioned
wavelets. These have proven extremely influential and quite
effective for many applications.
However, they are fundamentally isotropic, meaning they
decompose signals without considering how the signal varies
directionally.
Wavelets decompose an image signal with respect to translation
and scale. Since the early 2000s, there have been several
attempts to incorporate directionality into the wavelet
construction.
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Multiscale Directional Representations

Early attempts to make wavelets more sensitive to directionality
included appropriate filter design, anisotropic scaling, steerable
filters, and similar techniques.
Directional wavelets: J.-P. Antoine, R. Murenzi, P.
Vandergheynst, and S. Ali introduced more complicated group
actions for parametrization of 2-dimesnional wavelet transforms,
including rotations or similitude group. These results were later
generalized to construct wavelets on sphere and other manifolds.

J.-P. Antoine, D. Rosca, P. Vandergheynst,“Wavelet transform on manifolds: old and new approaches”, ACHA, 2010, Vol. 28 (2),189–202.

Subsequently Radon transform has been introduced in
combination with wavelet transforms to replace the angular
parametrization; This results in systems such as ridgelets (E.
Candès and D. Donoho) or Gabor ridge functions (L. Grafakos
and C. Sansing)
Contourlets: M. Do and M. Vetterli constructed a
discrete-domain multiresolution and multidirection expansion
using non-separable filter banks, in much the same way that
wavelets were derived from filter banks.
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Multiscale Directional Representations

Curvelets: E. Candès and D. L. Donoho introduced the
curvelets as an efficient tool to extract directional information
from images. Curvelets consist of translations and rotations of a
sequence of basic functions depending on a parabolic scaling
parameter. The curvelet transform is first developed in the
continuous domain and then discretized for sampled data.
Wavelets with Composite Dilations: K. Guo, D. Labate, W.-Q.
Lim, B. Manning, G. Weiss, and E. Wilson studied affine systems
built by using a composition of two sets of matrices as the
dilation.
Shearlets: D. Labate, K. Guo, G. Kutyniok, and G. Weiss
introduced a special example of the Composite Dilation
Wavelets.
Surfacelets (Do, Lu), bandlets (Le Pennec, Mallat), brushlets
(Meyer, Coifman), wedgelets (Donoho), phaselets (Gopinath),
complex wavelets (Daubechies), surflets (Baraniuk), etc etc ...
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Anisotropic Harmonic Analysis

These constructions incorporate directionality in a variety of
ways.
To summarize, some of the major constructions include:

Ridgelets.
E. Candès. Ridgelets: theory and applications. PhD thesis. (1998).

Curvelets.
D. Donoho and E. Candès. Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Curve and Surface Fitting. (1999).

Contourlets.
M. Do and M. Vetterli. Contourlets. Beyond Wavelets. (2001).

Shearlets.
D. Labate, W.-Q. Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional representation using shearlets. Proc. SPIE 5914. (2005).

Wavelets, ridgelets, curvelets, and shearlets are surprisingly
related, as they all are special cases of the recently introduced
α−molecules.

P. Grohs, S. Keiper, G. Kutyniok, and M. Schäfer. α−molecules. arXiv: 1407.4424. (2014).

Wojciech Czaja Mathematical Methods in Machine Learning



Lecture 2: Role of Directionality

Multiscale Directional Representations

Many of the aforementioned representations were designed
specifically for dealing with images, i.e., for the case of
2-dimensional Euclidean space.
Multiscale directional representations can also be constructed
analogously for higher dimensional spaces, as well as for some
manifolds.
A different approach is needed to deal with discrete structures,
such as graphs, networks, or point clouds. R. Coifman and M.
Maggioni proposed to use diffusion processes on such structures
to introduce the notion of scale and certain directions.
R. R. Coifman and M. Maggioni, “Diffusion wavelets,” ACHA, 2006, Vol. 21(1), pp. 53–94.
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Cartoon-like images

A useful model for real images is the class of cartoon-like
images, E2(R2).
Roughly, they are functions that are smooth away from a smooth
curve of discontinuity.

Definition

Cartoon-like image functions Let f ∈ L2(R2) be a function with
support contained in the closed unit square [0,1]2 and such that f can
be written as

f = f0 + 1Bf1,

for some B ⊂ [0,1]2 with a closed C2 boundary. If f0 ∈ C2(R2) and
f1 ∈ C2(R2), then we say that f ∈ E2(R2).
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Representations of E2(R2)

Let f ∈ E2(R2) and let fN be its best N-term approximation with
respect to a set of analyzing functions. The optimal asymptotic
decay rate of ||f − fN ||22 is O(N−2),N →∞, achieved adaptively.

D.L. Donoho, Sparse components of images and optimal atomic decomposition, Constr. Approx. 17 (2001), 353–382.

Definition

Let {ψi : i ∈ I} ⊂ L2(R2) be a normalized frame for L2(R2). Then, we
say that {ψi : i ∈ I} provides optimally sparse approximation for
E2(R2) if the best N-term nonlinear approximation error in L2(R2):

||f − fN ||22 =

∥∥∥∥∥∥f −
∑
i∈IN

〈f , ψi〉ψi

∥∥∥∥∥∥
2

2

,

where 〈f , ψi〉, i ∈ IN , are the N largest coefficients in magnitude,
satisfies

||f − fN ||22 ≤ CN−2,

as N →∞.
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Representations of E2(R2)

Up to a log factor, curvelets, contourlets, and shearlets satisfy
this optimal decay rate (ridgelets are only optimal for linear
boundaries). Hence, these analyzing functions are essentially
optimally sparse for cartoon-like images. Wavelets can only
achieve O(N−1). Fourier series are even worse with O(N−1/2).
We focus on shearlets since they have multiple, efficient
numerical implementations.
Shearlets’ optimality is nearly ideal for sufficiently chosen shear
let frames:

||f − fN ||22 ≤ CN−2 log3(N), as N →∞.

G. Kutyniok, W.-Q. Lim, Compactly supported shearlets are optimally sparse. J. Approx. Theory 163 (2011), 1564–1589.
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Shearlets
Continuous shearlets in R2 depend on three parameters: the scaling
parameter a > 0, the shear parameter s ∈ R, and the translation
parameter t ∈ R2, and they are defined as follows:
We define the parabolic scaling matrices

Aa =

(
a 0
0 a1/2

)
, a > 0

and the shearing matrices

Ss =

(
1 s
0 1

)
, s ∈ R.

Also, let DM be the dilation operator defined by

DMψ = |det M|−1/2ψ(M−1·), M ∈ GL2(R)

and Tt the translation operator defined by

Ttψ = ψ(· − t), t ∈ R2.
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Shearlets

Definition

Let ψ ∈ L2(R2). The Continuous Shearlet Transform of f ∈ L2(R2) is

f 7→ SHψf (a, s, t) = 〈f ,TtDAaDSsψ〉,a > 0, s ∈ R, t ∈ R2.

Parabolic scaling allows for directional sensitivity.
Shearing allows us to change this direction.
By carefully choosing ψ and discretizing the parameter space,
we can decompose f ∈ L2(R2) into a Parseval frame.
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Shearlets

It’s generally assumed that ψ̂ splits as
ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2/ξ1).

The basic shearlet ψ is only used in a horizontal cone, while the
reflection of ψ across the line ξ2 = ξ1 is used in a vertical cone. A
scaling function φ is used for the low-pass region. This
construction is known as cone-adapted shearlets.

Figure : Frequency tiling for cone-adapted shearlets.

G. Kutyniok and D. Labate, eds. Shearlets: Multiscale analysis for multivariate data. Birkhäuser. (2012).
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Shearlet Implementations

Shearlets have several efficient numerical implementations in
MATLAB that are freely available.

2D Shearlet Toolbox (Easley, Labate, and Lim). 1

Shearlab (Kutyniok, Shahram, Zhuang et al.). 2

Fast Finite Shearlet Transform (Häuser and Steidl).3

We used the last option (FFST) here, which is in many ways the
most intuitive of the implementations.

1http://www.math.uh.edu/˜dlabate/software.html
2http://www.shearlab.org/
3http://www.mathematik.uni-kl.de/imagepro/software/ffst/
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Fast Finite Shearlet Transform (FFST)

Consider an M × N image. Define j0 := blog2 max{M,N}c. We
discretize the parameters as follows:

aj := 2−2j =
1
4j , j = 0, . . . , j0 − 1,

sj,k := k2−j , −2j ≤ k ≤ 2j ,

tm :=
(m1

M
,

m2

N

)
, m1 = 0, . . . ,M − 1, m2 = 0, . . . ,N − 1.

Note that the shears vary from −1 to 1. To fill out the remaining
directions, we also shear with respect to the y -axis.
Shearlets whose supports overlap are “glued” together.
The transform is computed through the 2D FFT and iFFT.
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Fast Finite Shearlet Transform

Figure : Frequency tiling for FFST.

S. Häuser and G. Steidl. Fast finite shearlet transform: a tutorial. arXiv:1202.1773. (2014).
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Additional Picture for FFST

Figure : ψ̂1 and ψ̂2 for the FFST.

ibid.
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Fast Finite Shearlet Transform

Figure : Demonstration of output from the FFST on the cameraman image.
The shearlet coefficients are from scale 3 (out of 4) in the direction of slope 4.

ibid
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Summary and Conclusions

We have covered some of the multiscale directional
representations systems in use today.
These systems are equipped with good approximation
properties, exceeding in certain aspects what wavelet theory
provides us with, and they have fast implementations.
But we have to address the question of determining the specific
set of directions/parameters needed for any given data of
interest.
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