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Recall the Fast Finite Shearlet Transform (FFST)

Consider an M × N image. Define j0 := blog2 max{M,N}c. We
discretize the parameters as follows:

aj := 2−2j =
1
4j , j = 0, . . . , j0 − 1,

sj,k := k2−j , −2j ≤ k ≤ 2j ,

tm :=
(m1

M
,

m2

N

)
, m1 = 0, . . . ,M − 1, m2 = 0, . . . ,N − 1.

Note that the shears vary from −1 to 1. To fill out the remaining
directions, we also shear with respect to the y -axis.
Shearlets whose supports overlap are “glued” together.
The transform is computed through the 2D FFT and iFFT.
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Fast Finite Shearlet Transform

Figure : Frequency tiling for FFST.

S. Häuser and G. Steidl. Fast finite shearlet transform: a tutorial. arXiv:1202.1773. (2014).

Wojciech Czaja Mathematical Methods in Machine Learning



Lecture 3: Role of Directionality Continued

Additional Picture for FFST

Figure : ψ̂1 and ψ̂2 for the FFST.

ibid.
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Fast Finite Shearlet Transform

Figure : Demonstration of output from the FFST on the cameraman image.
The shearlet coefficients are from scale 3 (out of 4) in the direction of slope 4.

ibid
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How Well Can the FFST Resolve Directions?

We can prove that the direction of the shearlet coefficient of maximum
magnitude determines the direction, at least in the ideal case.

Theorem (with D. Weinberg, 2015)

Let f (x) = Hy>rx be a 2D Heaviside function and assume WLOG that
|r | ≤ 1. Fix a scale j and position m. Then the shearlet coefficient of
the FFST SH(f )(j , k ,m) is only nonzero for at most two consecutive
values of the shearing parameter k. The value of k that maximizes
|SH(f )(j , k ,m)| satisfies

∣∣sj,k − r
∣∣ < 1

2j .

Furthermore, for this k, sj,k is closest to r over all k.

D. Weinberg, Multiscale and Directional Representations of High-dimensional Information in Remotely Sensed Data, Ph.D. Thesis,

University of Maryland College Park, 2015
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Sketch of Proof

We first show by direct computation that∫
R ψ̂(−rω, ω)dω =

∫
R ψ(x , rx)dx for all ψ ∈ S(R2), r ∈ R.

Since ∂
∂y Hy>rx = δy−rx , Ĥy>rx = 1

2πiω2
δ̂y−rx .

Using the above, 〈δ̂y−rx , ψ̂〉 =
∫
R ψ̂(−rω, ω)dω, ψ̂ ∈ C∞c (R2).

We compute

SH(f )(j , k ,m) = 〈f , ψjkm〉

= 〈f̂ , ψ̂jkm〉

=

∫
R2

1
2πiω2

δ̂y−rx (ω1, ω2)ψ̂jkm(ω1, ω2)dω1dω2

=
1

2πi

∫
R

1
ω2
ψ̂jkm(−rω2, ω2)dω2.

Wojciech Czaja Mathematical Methods in Machine Learning



Lecture 3: Role of Directionality Continued

Sketch of Proof

By the way ψ̂ decomposes,

ψ̂jkm(−rω2, ω2) = ψ̂1(4−jω2)ψ̂2(−2j r+k) exp(−2πi(−rω2m1/M+ω2m2/N)).

Since k only appears in ψ̂2(−2j r + k), we examine that term
separately.
By assumption, ψ̂2 is a positive, smooth function supported on
[−1,1] that is strictly increasing on [−1,0] and decreasing on
[0,1].
Hence, to obtain a nonzero shearlet coefficient, we must have
| − 2j r + k | < 1 or |sj,k − r | < 1/2j .
The shearlet slopes differ by 1/2j , so this can only occur at most
twice.
The coefficient is maximized when −2j r + k is closest to 0, that
is, when sj,k is closest to r .
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Shearlets - a few results

Shearlet multiresolution analysis theory and decomposition
algorithm - G. Kutyniok and T. Sauer
Shearlet approach to edge detection - S. Yi, D. Labate, G.
Easley, and H. Krim
Shearlet-based method to invert the Radon transform - F.
Colonna, G. R. Easley, K. Guo, and D. Labate

All of the above results are in the setting of R2. But we are also
interested in higher dimensional constructions.
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Translation-dilation-shearing group

E. Cordero, F. DeMari, K. Nowak, and A. Tabacco introduced the
following group interpretation of shearlets, by means of the
Translation-Dilation-Shearing Group:{

At,`,y =

(
t−1/2S`/2 0

t−1/2By S`/2 t1/2(St
−`/2)

)
: t > 0, ` ∈ R, y ∈ R2

}
,

where By =

(
0 y1
y1 y2

)
, y = (y1, y2)t ∈ R2, S` =

(
1 `
0 1

)
.

Stems from attempts to characterize reproducing subgroups of
R2d o Sp(2d ,R).
We aim to generalize it to d ≥ 2.
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Translation-dilation-shearing group in Rk

For k ≥ 1, we define (TDS)k to be{
At,`,y =

(
t−1/2S`/2 0

t−1/2By S`/2 t1/2St
−`/2)

)
: t > 0, ` ∈ Rk−1, y ∈ Rk

}
y = (y1, y2, · · · , yk )t ∈ Rk

By =


0 0 . . . y1
0 0 . . . y2
...

...
. . .

...
y1 y2 . . . yk

, S` =


1 0 . . . 0 `1
0 1 . . . 0 `2
...

...
. . .

...
0 0 . . . 1 `k−1
0 0 . . . 0 1


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Translation-dilation-shearing group in Rk

The symplectic group Sp(d ,R) is the subgroup of 2d × 2d
matrices g ∈ M(2d ,R) which satisfy gtJ g = J , where

J =

(
0 Id
−Id 0

)
.

Theorem (with E. King)

For any k ≥ 1, (TDS)k is a Lie subgroup of Sp(k ,R) of dimension 2k.
The left Haar measures, up to normalization, of (TDS)k are
dτ = dt

t2 dy for k = 1 and dτ = dt
tk+1 dyd` for k > 1, where dt, dy and

d` are the Lebesgue measures over R+, Rk and Rk−1, respectively.

E. J. King, Wavelet and frame theory: frame bound gaps, generalized shearlets, Grassmannian fusion frames, and p-adic wavelets, Ph.D.
Thesis, University of Maryland College Park, 2009

W. Czaja, E. King, Isotropic shearlet analogs for L2(Rk ) and localization operators, Numerical Functional Analysis and Optimization 33
(2012), no. 7-9, pp. 872–905

W. Czaja, E. King, Shearlet analogs of L2(Rd ), Math. Nachr. 287 (2014), no. 89, pp. 903–916
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Reproducing functions

We are interested in reproducing formulas, which hold for all
f ∈ L2(Rd ),

f =

∫
H
〈f , µe(h)φ〉µe(h)φdh,

where H is a Lie subgroup of a particular Lie group, µe is a
representation of that group, φ is a suitable window in L2(Rd ),
and the equality is interpreted weakly.
Define the metaplectic representation:

µ(At,`,y )f (x) = tk/4e−iπ〈By x,x〉f (t1/2S−`/2x).

At,`,y =

(
t−1/2S`/2 0

0 t1/2(St
−`/2)

)(
I 0

t−1(St
`/2)By S`/2 I

)
.
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Calderón admissibility condition

Theorem (Calderón formula, with E. King)

The following equality holds

‖f‖2
L2(Rk ) =

∫
(TDS)k

|〈f , µ(At,`,y )φ〉|2 dt
tk+1 dyd`

for all f ∈ L2(Rk ), if and only if

2−k =

∫
Rk

+

|φ(y)|2 dy
y2k

k
=

∫
Rk

+

|φ(−y)|2 dy
y2k

k
(1)

0 =

∫
Rk

+

φ(y)φ(−y)
dy
y2k

k
. (2)

The case k = 1 was proven by DeMari and Nowak.
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Building reproducing functions

Theorem (with E. King)

Let f : R→ R be supported in some interval [0,b], b > 0 and satisfy∫
f 2(x)dx = 1

4 . For a > 0, define

φ(x) = x (f (x − a)− f (−x + a + 2b) + f (x + a + b) + f (−x − a− b)) .

Then φ is a reproducing function for (TDS)1.

f = 1[0, 1
4 ]

f = 1√
π

cos ·1[0,π2 ]

f ∈ C∞c (R) has support in [0,b] and is scaled so that
∫

f 2 = 1
4 ,

then the resulting φ will also lie in C∞c
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Uniqueness of generalization

Dahlke, Steidl, and Teschke introduced another k -dimensional
shearlet transform.
This construction does not yield a reproducing subgroup of
Sp(k ,R).
The only pseudo-TDS collection which is a reproducing
subgroup of Sp(k ,R) and has a representation onto the
operators Ty Dt−1(St

`) is (TDS)k .
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Shearlets are not perfect

Shearlet algorithms result in frames with high redundancy.
There does not exist any compactly supported MRA shearlet
with a desirable level of regularity (Houska, 2009), e.g., Hölder
continuous in e2 with exponent β > 0.5.
Most common implementations of shearlets involve separable
generating functions..
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Composite Dilation Wavelets

We return to the origin of wavelets: translations and dilations.
Shearlets descend from the idea of composite wavelets as
introduced by Guido Weiss.
For any c ∈ GLn(R) we define the dilation operator
Dc : L2(Rn)→ L2(Rn) as Dc f (x) = |det c|−1/2f (c−1x).
Let A,B ⊂ GLn(R) and L ⊂ Rn be a full rank lattice, then the set
{ψ1, . . . ψL} ⊂ L2(Rn) forms a Composite Dilation Wavelet (CDW)
system if the collection

AABL(ψ) = {DaDbTkψ
i : a ∈ A,b ∈ B, k ∈ L,1 ≤ i ≤ L}

forms a normalized tight frame.
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Composite Dilation Wavelets

Under the assumption that B is a finite group with B(L) ⊂ L and
|det b| = 1, for b ∈ B, Manning (2012) proposed to group the
dilations B and the lattice L together into a single group of shifts
Γ = BL.
B. Maning, Composite Multiresolution Analysis Wavelets, Ph.D. Thesis, Washington University in St. Louis, 2012

For any γ ∈ Γ, we define the shift operator Lγ : L2(Rn)→ L2(Rn)
as Lγ f (x) = f (γ−1(x)).
Given a ∈ GLn(R), the set {ψ1, . . . , ψL} forms a CDW if the
system

AaΓ(ψ) = {Daj Lγψi : j ∈ Z, γ ∈ Γ,1 ≤ i ≤ L}

forms a tight frame.
CDW are usual wavelets except the commutative group of
translates Zn is replaced with the non-commutative group of
shifts Γ.
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Composite Dilation Wavelets

Figure : Example of a composite dilation wavelet. The picture on the left is
the Fourier transform of the scaling function. The picture on the right is the
Fourier transform of the wavelet.
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Variational methods with directional multiscale
representations

Ginzburg-Landau energy functionals have been used by A.
Bertozzi and her collaborators in a number of image processing
applications that involve variational techniques.
J. Dobrosotskaya and A. Bertozzi, “Analysis of the wavelet Ginzburg-Landau energy in image applications with edges,” SIAM J.

Imaging Sci., 2013, Vol. 6 (1), pp. 698–729.

Wavelet-modified GL energies reduce blurring effects of the TV
functionals, increase robustness, and sharpen edges.
Isotropic wavelets are unable to take advantage of directional
content. Anisotropy of wavelet bases and wavelet generator
functions leads to biased analysis of singularities along different
directions.
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Shearlet Ginzburg-Landau energy

Let
ψi,j,t = 23i/2ψ(Sj

1Ai
2x − t),

for x ∈ R2 and ψ̂(ξ) = ψ̂1(ξ1)ψ̂2(ξ2/ξ1).
Shearlet Besov seminorm is

‖u‖2
S =

∞∑
i=0

22i
∑
j∈Z

∫
(|〈u, ψi,j,t〉|2 + |〈u∗, ψi,j,t〉|2) dt ,

where u∗(x , y) = u(y , x).
Shearlet Ginzburg-Landau energy is

SGLα(u) =
α

2
‖u‖2

S +
1

4α

∫
((u2(x)− 1)2 dx .
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Composite Wavelet Ginzburg-Landau energy

Let
ψi,γ = Da−i Lγψ,

for i ∈ Z and γ ∈ Γ.
Composite Wavelet Besov seminorm is

‖u‖2
CW =

∞∑
i=0

|det a|i
∑
γ∈Γ

|〈u, ψi,γ〉|2.

Composite Wavelet Ginzburg-Landau energy is

CWGLα(u) =
α

2
‖u‖2

CW +
1

4α

∫
((u2(x)− 1)2 dx .
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Applications to data recovery

In many imaging applications variational methods are based on
minimizing an energy consisting of two parts: regularizing and
forcing terms.
DGL energy (D = S or CW) plays the role of a regularizer, while
the forcing term is expressed as the L2 norm between the
minimizer u and the known image f on the known domain:

E(u) = DGL(u) +
µ

2
‖u − f‖2

L2(Ω).

We recover the complete image as the minimizer of the modified
DGL functional.
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Applications to data recovery

The minimizer is a stable state solution of the respective gradient
descent equation:

ut = α∆Du − 1
ε

W ′(u)− µχΩ(u − f )

Here χΩ is the characteristic function of the known domain,
W (x) = (x2 − 1)2, and

∆CW u = −
∞∑
i=0

|det a|i
∑
γ∈Γ

〈u, ψi,γ〉ψi,γ ,

or

∆S(u) = −
∞∑
i=0

22iui −
∞∑
i=0

22i ((u∗)i )
∗.
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Shearlet inpainting

Figure : Results of anisotropic shearlet inpainting which preserves the
directional distribution of the input data, as an illustration of the need to know
the local and global directions in image processing.

W. Czaja, J. Dobrosotskaya, B. Manning, Shearlet representations for reconstruction of missing data, Proc. SPIE Vol. 8750 (2013), no. 8750-2
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Composite Dilation Wavelet Inpainting

(a) (b) (c)

Figure : (a) Original image with gray area missing, (b) image reconstructed
via minimizing CWGL after 100 iterations, ε = 1/24, µ = 1600; (c)
post-processed images (b)
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Composite Dilation Wavelets vs Shearlets

(a) (b)

Figure : (a) Original image with gray area missing, (b) Shearlet inpainting
does not show the required anisotropy, post-processing does not help
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Composite Dilation Wavelets may fail too

Figure : Another example of a composite dilation wavelet. The figure above
describes the Haar scaling function and wavelet for the twelve element group
B. The scaling function is supported and constant on both the light and dark
shaded areas. There are four wavelet functions. Each wavelet function is
supported on both the light and dark shaded areas and is constant on each
of the smaller triangles. Wojciech Czaja Mathematical Methods in Machine Learning
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Composite Dilation Wavelets may fail too

(a) (b)

Figure : (a) Original image with a missing annulus is shown in gray, (b) the
output of the inpainting simulation fails to reproduce our earlier results.
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Applications to superresolution

Jointly with researchers from NGA, we exploited applications of
directional methods for image super-resolution.
E. H. Bosch,et al., “Multiscale and multidirectional tight frames for image analysis,” Proc. SPIE, Vol. 8750, 2013.

(a) Original Image

(b) Bicubic Interpolation (c) Tight Frame Superresolution

Figure : Image taken from the MUUFL HSI-LIDAR dataset, courtesy of P.
Gader (UFL) and A. Zare (UM). Spatial subset of a false-RGB combination
comparing directional tight frame scheme to bicubic interpolation for doubling
the resolution in each direction.Wojciech Czaja Mathematical Methods in Machine Learning
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Summary and Conclusions

We have covered some of the multiscale directional
representations systems in use today.
These systems come equipped with good approximation
properties and have fast implementations.
The difficulties arise in higher dimensions, where the
computational complexity increases.
Additionally, for more complex data structures, the a priori notion
of direction may not be well defined.
Finally, determining the set of directions without the reference to
specific data is limiting. Next, we shall take a look at data
dependent representations.
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