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Introduction

Let’s start by paraphrasing some of the principles we laid out in the
first lecture:

There has always been an abundance of data available.
This data was always too large, too high-dimensional, too noisy,
and too complex.
Typical problems associated with such data were always to
cluster, classify, or segment it; and to detect anomalies or
embedded targets.
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Plan

Our plan for today is as follows:
We shall start by describing a class of data-dependent
techniques that will be of interest to us. These are the so called
Kernel Eigenmap Methods.
We will briefly mention some possible generalizations of these
methods, both from algorithmic and mathematical perspective.
And then we will discuss the oldest example that fits into our
category of interest: the PCA.
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Data Organization and Manifold Learning

There are many techniques for Data Organization and Manifold
Learning, e.g., Principal Component Analysis (PCA), Locally
Linear Embedding (LLE), Isomap, genetic algorithms, and neural
networks.
We are interested in a subfamily of these techniques known as
Kernel Eigenmap Methods. These include Kernel PCA, LLE,
Hessian LLE (HLLE), and Laplacian Eigenmaps, Diffusion Maps,
Diffusion Wavelets (Output Normalized Methods)).
Kernel eigenmap methods require two steps. Given data space
X of N vectors in RD.

1 Construction of an N × N symmetric, positive semi-definite kernel,
K , from these N data points in RD .

2 Diagonalization of K , and then choosing d ≤ D significant
eigenmaps of K . These become our new coordinates, and
accomplish dimensionality reduction.
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Kernel Eigenmap Methods for Dimension Reduction -
Kernel Construction

Kernel eigenmap methods were introduced to address
complexities not resolvable by linear methods.
The idea behind kernel methods is to express correlations or
similarities between vectors in the data space X in terms of a
symmetric, positive semi-definite kernel function K : X × X → R.
Generally, there exists a Hilbert space K and a mapping
Φ : X → K such that

K (x , y) = 〈Φ(x),Φ(y)〉.

Then, diagonalize by the spectral theorem and choose significant
eigenmaps to obtain dimensionality reduction.
Kernels can be constructed by many kernel eigenmap methods.
These include Kernel PCA, LLE, HLLE, and Laplacian
Eigenmaps.
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Kernel Eigenmap Methods for Dimension Reduction -
Kernel Diagonalization

The second step in kernel eigenmap methods is the
diagonalization of the kernel.
Let ej , j = 1, . . . ,N, be the set of eigenvectors of the kernel
matrix K , with eigenvalues λj .
Order the eigenvalues monotonically.
Choose the top d << D significant eigenvectors to map the
original data points xi ∈ RD to (e1(i), . . . ,ed (i)) ∈ Rd ,
i = 1, . . . ,N.
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Data Organization
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There are other alternative interpretations for the steps of our
diagram:

1 Constructions of kernels K may be independent from data and
based on principles.

2 Redundant representations, such as frames, can be used to
replace orthonormal eigendecompositions.

We need not select the target dimensionality to be lower than the
dimension of the input. This leads, to data expansion, or data
organization, rather then dimensionality reduction.
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Operator Theory on Graphs

Presented approach leads to analysis of operators on
data-dependent structures, such as graphs or manifolds.
Locally Linear Embedding, Diffusion Maps, Diffusion Wavelets,
Laplacian Eigenmaps, Schroedinger Eigenmaps.
Mathematical core:

Pick a positive symmetric operator A as the infinitesimal generator
of a semigroup of operators, etA, t > 0.
The semigroup can be identified with the Markov processes of
diffusion or random walks, as is the case, e.g., with Diffusion Maps
and Diffusion Wavelets of R. R. Coifman and M. Maggioni.
The infinitesimal generator and the semigroup share the common
representation, e.g., eigenbasis.
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First step: PCA - Principal Component Analysis

K. Pearson, On lines and planes of closest fit to systems of points
in space, Philosophical Magazine, vol. 2 (1901), pp. 559–572
H. Hoteling, Analysis of a complex of statistical variables into
principal components, Journal of Education Psychology, vol. 24
(1933), pp. 417–44
K. Karhunen, Zur Spektraltheorie stochastischer Prozesse, Ann.
Acad. Sci. Fennicae, vol. 34 (1946)
M. Loève, Fonctions aléatoire du second ordre, in Processus
stochastiques et mouvement Brownien, p. 299, Paris (1948)

Wojciech Czaja Mathematical Methods in Machine Learning



Lecture 4: Principal Component Analysis

PCA from Data perspective

We present a data-inspired model for PCA.
Assume we have D observed (measured) variables:
y = [y1, . . . , yD]T . This is our data.
Assume we know that our data is obtained by a linear
transformation W from d unknown variables x = [x1, . . . , xd ]T :

y = W (x).

Typically we assume d < D.
Assume moreover that the D × d matrix W is a change of a
coordinate system, i.e., columns of W (or towns of W T ) are
orthonormal to each other:

W T W = Idd .

Note that WW T need not be an identity.
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PCA

Given the above assumptions the problem of PCA can be stated as
follows:

How can we find the transformation W
and the dimension d from a finite number of measurements y?

We shall need 2 additional assumptions:
Assume that the unknown variables are Gaussian;
Assume that both the unknown variables and the observations
have mean zero (this is easily guaranteed by subtracting the
mean, or the sample mean).
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Criteria for leading to PCA

We can represent the principle behind PCA ver generally, as an
optimization criterion. In this regard with have:

A : RD → Rd , s.t. y 7→ x = A(y);
S : Rd → RD, s.t., x 7→ y = S(x).

And we want to minimize the function:

Ey (‖y − S(A(y))‖) .

We already have matrix W , which in view of the above, will be the
synthesis/decoding mapping, S = W .
For the analysis/coding map, Pearson proposed to use A = W+, the
pseudoinverse of W .
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PCA from minimizing the reconstruction error

For a noninvertible matrix, we have its pseudoinverse defined as

W+ = (W T W )−1W T

In our case, W+ = W T , Thus, if y = Wx , we have

WW T y = WW T Wx = WIddx = y ,

or, equivalently,
y −WW T y = 0.

With the presence of noise, we cannot assume anymore the perfect
reconstruction, hence, we shall minimize the reconstruction error
defined as

Ey (‖y −WW T y‖2
2).

It is not difficult to see that

Ey (‖y −WW T y‖2
2) = Ey (yT y)− Ey (yT WW T y).
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Optimization

Indeed,

Ey (‖y −WW T y‖2
2) = Ey ((y −WW T y)T (y −WW T y))

= Ey (yT y − 2yT WW T y + yT WW T WW T y)

= Ey (yT y − 2yT WW T y + yT WW T y)

= Ey (yT y − yT WW T y)

= Ey (yT y)− Ey (yT WW T y).
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PCA from minimizing the reconstruction error

As Ey (yT y) is constant, our minimization of error reconstruction turns
into a maximization of Ey (yT WW T y). In reality, we know little about
y , so we have to rely on the measurements y(k), k = 1, . . . ,N. Then,

Ey (yT WW T y) ∼ 1
N

N∑
n=1

(y(n))T WW T (y(n)) ∼ 1
N

tr(Y T WW T Y ),

where Y is the matrix whose columns are the measurements y(n)
(hence Y is a D × N matrix).
Using SVD for Y : Y = V ΣUT , we obtain:

Ey (yT WW T y) ∼ 1
N

tr(UΣT V T WW T V ΣUT ).

Therefore, after some computations we obtain:

argmaxW Ey (yT WW T y) ∼ V IdD×d ,

and so x ∼ Idd×DV T y .
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Conclusions

We have presented today the first data dependent
representation: the Principal Component Analysis.
We have introduced PCA from the perspective of reconstruction
error minimization. This is however not the only possible
approach.
Next time, we shall look at the PCA from the perspective of
maximizing variant and decorrelation. Our immediate goal to
establish a set of design principles which can be generalized to
include other types of transformations.
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