8 AM

Question 1

$\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$, so

$$
\begin{aligned}
\sec \left(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right) & =\sec \left(\frac{\pi}{3}\right) \\
& =\frac{1}{\cos \left(\frac{\pi}{3}\right)} \\
& =\frac{1}{1 / 2} \\
& =2
\end{aligned}
$$

Question 2

Since the limit as $x \rightarrow 0^{+}$is zero in both the numerator and the denominator, we use L'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{\cos (x)} \\
& =\frac{\sin (0)}{\cos (0)} \\
& =\frac{0}{1} \\
& =0
\end{aligned}
$$

The evaluation at 0 follows from continuity.

Question 3

We proceed by switching x and y , and solving for the new y :

$$
\begin{aligned}
x & =-4 y^{3}-1 \\
x+1 & =-4 y^{3} \\
-\frac{x+1}{4} & =y^{3} \\
\left(-\frac{x+1}{4}\right)^{1 / 3} & =y=f^{-1}(x)
\end{aligned}
$$

Question 4

We proceed by substitution, letting $u=e x$ and $d u=e d x$:

$$
\begin{aligned}
\int e^{e x} d x & =\int e^{u} \frac{1}{e} d u \\
& =\frac{1}{e} e^{u}+C \\
& =e^{-1} e^{e x}+C \\
& =e^{e x-1}+C
\end{aligned}
$$

9 AM

Question 1

$\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$, so

$$
\begin{aligned}
\sec \left(\sin ^{-1}\left(\frac{1}{2}\right)\right) & =\sec \left(\frac{\pi}{6}\right) \\
& =\frac{1}{\cos \left(\frac{\pi}{6}\right)} \\
& =\frac{1}{\sqrt{3} / 2} \\
& =\frac{2}{\sqrt{3}}
\end{aligned}
$$

Question 2

Since the limit as $x \rightarrow 0^{+}$is zero in both the numerator and the denominator, we use L'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{\cos (x)} \\
& =\frac{\sin (0)}{\cos (0)} \\
& =\frac{0}{1} \\
& =0
\end{aligned}
$$

The evaluation at 0 follows from continuity.

Question 3

We proceed by switching x and y , and solving for the new y :

$$
\begin{aligned}
x & =y^{2}-1 \\
x+1 & =y^{2} \\
\sqrt{x+1} & =|y| \\
\sqrt{x+1} & =y=f^{-1}(x)
\end{aligned}
$$

The choice of positive square root is made to give us the inverse on $[0, \infty)$.

Question 4

We proceed by substitution, letting $u=2 x$ and $d u=2 d x$:

$$
\begin{aligned}
\int 2^{2 x} d x & =\int 2^{u} \frac{1}{2} d u \\
& =\frac{1}{2} \int e^{\ln 2^{u}} d u \\
& =\frac{1}{2} \int e^{u \ln 2} d u
\end{aligned}
$$

Now letting $v=\ln (2) u$ and $d v=\ln (2) d u$:

$$
\begin{aligned}
\frac{1}{2} \int e^{u \ln 2} d u & =\frac{1}{2} \int e^{v} \frac{1}{\ln (2)} d v \\
& =\frac{1}{2 \ln (2)} e^{v}+C \\
& =\frac{1}{2 \ln (2)} e^{\ln (2) u}+C \\
& =\frac{1}{2 \ln (2)} e^{\ln (2) 2 x}+C \\
& =\frac{1}{2 \ln (2)} 2^{2 x}+C
\end{aligned}
$$

10 AM

Question 1
$\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$, so

$$
\begin{aligned}
\csc \left(\sin ^{-1}\left(\frac{1}{2}\right)\right) & =\csc \left(\frac{\pi}{6}\right) \\
& =\frac{1}{\sin \left(\frac{\pi}{6}\right)} \\
& =\frac{1}{1 / 2} \\
& =2
\end{aligned}
$$

Question 2

Since the limit as $x \rightarrow 0^{+}$is zero in both the numerator and the denominator, we use L'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)} & =\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{\cos (x)} \\
& =\frac{\sin (0)}{\cos (0)} \\
& =\frac{0}{1} \\
& =0
\end{aligned}
$$

The evaluation at 0 follows from continuity.

Question 3

We proceed by switching x and y , and solving for the new y :

$$
\begin{aligned}
x & =y^{3}-1 \\
x+1 & =y^{3} \\
\sqrt[3]{x+1} & =y=f^{-1}(x)
\end{aligned}
$$

Question 4

We know that:

$$
\int \frac{d x}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C
$$

So by setting $u=x$ and $a=\sqrt{2}$, we obtain:

$$
\begin{aligned}
\int 2 d x 2+x^{2} & =2 \int d x a^{2}+u^{2} \\
& =2 \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{u}{a}\right) \\
& =2 \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)
\end{aligned}
$$

11 AM

Question 1

$\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$, so

$$
\begin{aligned}
\sec \left(\cos ^{-1}\left(\frac{1}{2}\right)\right) & =\sec \left(\frac{\pi}{6}\right) \\
& =\frac{1}{\cos \left(\frac{\pi}{6}\right)} \\
& =\frac{1}{1 / 2} \\
& =2
\end{aligned}
$$

Question 2

Since the limit as $x \rightarrow 0^{+}$is zero in both the numerator and the denominator, we use L'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{\sin (x)} & =\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{\cos (x)} \\
& =\frac{e^{0}}{\cos (0)} \\
& =\frac{1}{1} \\
& =1
\end{aligned}
$$

The evaluation at 0 follows from continuity.

Question 3

We proceed by switching x and y , and solving for the new y :

$$
\begin{aligned}
x & =2 y^{3}+1 \\
x-1 & =2 y^{3} \\
\frac{x-1}{2} & =y^{3} \\
\sqrt[3]{\frac{x-1}{2}} & =y=f^{-1}(x)
\end{aligned}
$$

Question 4

We proceed by substitution, letting $u=2 x$ and $d u=2 d x$:

$$
\begin{aligned}
\int e^{2 x} d x & =\int e^{u} \frac{1}{2} d u \\
& =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{2 x}+C
\end{aligned}
$$

12 PM

Question 1

$\cot ^{-1}(1)=\frac{\pi}{2}$, so

$$
\begin{aligned}
\tan \left(\cot ^{-1}(1)\right) & =\tan \left(\frac{\pi}{2}\right) \\
& =1
\end{aligned}
$$

Question 2

Since the limit as $x \rightarrow 0^{+}$is zero in both the numerator and the denominator, we use L'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x} & =\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{1} \\
& =\frac{e^{0}}{1} \\
& =1
\end{aligned}
$$

The evaluation at 0 follows from continuity.

Question 3

We proceed by switching x and y , and solving for the new y :

$$
\begin{aligned}
x & =2 y^{2} \\
\frac{x}{2} & =y^{2} \\
\sqrt{\frac{x}{2}} & =|y| \\
\sqrt{\frac{x}{2}} & =y=f^{-1}(x)
\end{aligned}
$$

The choice of positive square root is made to give us the inverse on $(0, \infty)$.

Question 4

We know that:

$$
\int \frac{d x}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+C
$$

So by setting $u=x$ and $a=\sqrt{2}$, we obtain:

$$
\begin{aligned}
\int 2 d x \sqrt{2-x^{2}} & =2 \int d x \sqrt{a^{2}-u^{2}} \\
& =2 \sin ^{-1}\left(\frac{u}{a}\right)+C \\
& =2 \sin ^{-1}\left(\frac{x}{\sqrt{(2)}}\right)+C
\end{aligned}
$$

1 PM

Question 1

$\tan ^{-1}(1)=\frac{\pi}{2}$, so

$$
\begin{aligned}
\cot \left(\tan ^{-1}(1)\right) & =\cot \left(\frac{\pi}{2}\right) \\
& =\frac{1}{\tan \left(\frac{\pi}{2}\right)} \\
& =\frac{1}{1} \\
& =1
\end{aligned}
$$

Question 2

Since the limit of the left term is 0 as $x \rightarrow 0^{+}$, while the limit of the right term is $-\infty$, we re-write as a fractional limit:

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}
$$

Since the limits in the numerator and the denominator of this fraction are both zero, we can use L'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x} & =\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}} \\
& =\lim _{x \rightarrow 0^{+}}-\frac{x^{2}}{x} \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

The evaluation at 0 follows from continuity.

Question 3

We proceed by switching x and y , and solving for the new y :

$$
\begin{aligned}
x & =y^{3}+2 \\
x-2 & =y^{3} \\
\sqrt[3]{x-2} & =y=f^{-1}(x)
\end{aligned}
$$

Question 4

Since the exponent in the first factor is e^{x}, we can let $u=e^{x}$ and $d u=e^{x} d x$.

$$
\begin{aligned}
\int e^{e^{x}} e^{x} d x & =\int e^{u} e^{x} d x \\
& =\int e^{u} d u \\
& =e^{u}+C \\
& =e^{e^{x}}+C
\end{aligned}
$$

