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Question 1

nanolo sin (?),_n) = sin <nh_)n;o (g) ) = sin(0) = 0.

Question 2

Note that we know lim n'/™ = 1. Now we have
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Question 3
The integral diverges to —oo because
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Question 4

The error for using the Trapezoid Rule with n subintervals is denoted E! and we have
the inequality

where Kr denotes the maximum of the absolute value of the second derivative of f on
the interval [a,b]. We have f(z) = sin(z), so f"’(z) = —sin(x) and |f”(x)| = | sin(z)| has
a maximum of 1 on [r, 37]. Therefore the error is bounded by

We want this error to be bounded above by 1—10, so we have
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< = >4/ — ~14.4.
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We know n must be an integer, so the smallest value of n for which this inequality holds
isn =15.
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Question 1

Let u = 3n, and so as n goes to infinity, so does u. Then we have
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since we know that lim (1+ 1)“ =e.
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Question 2

Note that we know lim n'/™ = 1. Now we have

n—o0

lim (3n)"" = lim 3"/". lim n'/" =1-1=1.

n—oo n—oo n—oo

Question 3
The integral diverges to co because

1 1

1 1
/ = lim / = lim In|z + 1] |4= lim In|2] —In|A + 1] = co.
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Question 4

The error for using the Trapezoid Rule with n subintervals is denoted EI and we have
the inequality
Kr(b—a)’

12n?

where Kr denotes the maximum of the absolute value of the second derivative of f on
the interval [a,b]. We have f(z) = ¢e”, so f"(z) = e” and |f"(x)| = €” has a maximum of
e on [0, 1]. Therefore the error is bounded by
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We want this error to be bounded above by 1—10, so we have

e 1 He
ET < < = p>4/=~14.
n = 1002 =10 "=\'%

We know n must be an integer, so the smallest value of n for which this inequality holds
isn=2.
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Question 1

Let u = %, and so as n goes to infinity, so does u. Then we have

2 n 1 2u 1 u\ 2
lim <1+—> = lim (1+—> :(lim (1+—> ) = ¢?
n—oo n U—00 u n—oo U

since we know that lim (1+ 1)* =e.
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Question 2

1/n

Note that we know lim n'/™ = 1. Now we have
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lim (n)"?" = (lim n'/™)Y2 =12 =1,
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Question 3
The integral converges to 1 because
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Question 4

The error for using the Trapezoid Rule with n subintervals is denoted EI and we have
the inequality

where K1 denotes the maximum of the absolute value of the second derivative of f on
the interval [a,b]. We have f(z) = cos(x), so f"(z) = —cos(x) and |f"(z)| = | cos(z)| has
a maximum of 1 on [0, 47]. Therefore the error is bounded by
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We want this error to be bounded above by %0, so we have

A1
(47) <Ll s YT Loss
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We know n must be an integer, so the smallest value of n for which this inequality holds
isn =29.
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Question 1

Note that we know lim n'/™ = 1. Now we have

n—oo

lim cos(2rn™) = cos(lim 2 - lim n'/™) = cos(27 - 1) = cos(27) = 1.

n—oo n—oo n—oo

Question 2

Note that we know lim n'/™ = 1. Let u = 2n, so u goes to 0o as n goes to co. Now we

have
CoaNe o o1ye o fml
lim | — = lim ([ — = — = - =1.
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Question 3
The integral converges to 1 because
0 A
1 ) 1 =1, 1
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Question 4

The error for using the Trapezoid Rule with n subintervals is denoted EI and we have
the inequality

" 12n2
where Kr denotes the maximum of the absolute value of the second derivative of f on
the interval [a,b]. We have f(z) = 22, so f”(z) = 2 and |f”(x)| = |2| has a maximum of

2 on [1,2]. Therefore the error is bounded by

2

ET < .
T 12n2

We want this error to be bounded above by %07 so we have

2 < 1 N )
— n —.
12n%2 = 10 — V3
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We know n must be an integer, so the smallest value of n for which this inequality holds
isn=2.
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Question 1

Since —1 < sin(2z) < 1 we have

-1 < sin(2n)
n n

<

S|

Since both % and _71 converge to 0 as n — 00, by the squeeze theorem we have

lim sin(2n) _0

n—00 n

Question 2

Note that we know lim n'/™ = 1. Now we have

lim (nQ)ﬁ = (lim p/™)Y2 . (lim pY/™Y2 =1.1=1.
n—oo n—oo n—oo

Question 3
The integral diverges to oo because
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Question 4

The error for using the Trapezoid Rule with n subintervals is denoted EI and we have
the inequality

ET S KT(b — CL)3
" 12n2
where K1 denotes the maximum of the absolute value of the second derivative of f on the
interval [a, b]. We have f(z) = e, so f"(x) = e * and | f"(z)| = |e *| has a maximum of

1 on [0, 1]. Therefore the error is bounded by

ET !
"= 12n2
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We want this error to be bounded above by %, so we have

1 1 5
ET < < — > \/j
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We know n must be an integer, so the smallest value of n for which this inequality holds
isn=1.
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Question 1

Question 2

Note that we know lim n'/™ = 1. Now we have

n—o0

lim (n®)Y™ = lim 2™ - lim Y™ lim /" =1.1-1=1.

n—~oo n—oo n—oo n—oo

Question 3

The integral diverges to co because
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/— = lim [ — = lim In|z| |{= lim In(A) = cc.
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Question 4

The error for using the Trapezoid Rule with n subintervals is denoted EI and we have
the inequality
KT(b — CL>3

12n2
where K7 denotes the maximum of the absolute value of the second derivative of f on
the interval [a,b]. We have f(x) = e”, so f"(z) = e” and |f”(x)| = €” has a maximum of
e? on [0,2]. Therefore the error is bounded by

ET <

62

12n2°

We want this error to be bounded above by %0, so we have

ET <
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e? < 1 N 5e2 o5
— n — =~ 25.
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We know n must be an integer, so the smallest value of n for which this inequality holds
isn=3.



