8 AM

Question 1

$$
\lim _{n \rightarrow \infty} \sin \left(\frac{2^{n}}{3^{n}}\right)=\sin \left(\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{n}\right)=\sin (0)=0
$$

Question 2

Note that we know $\lim _{n \rightarrow \infty} n^{1 / n}=1$. Now we have

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n}=\frac{\lim _{n \rightarrow \infty} 1^{\frac{1}{n}}}{\lim _{n \rightarrow \infty} n^{1 / n}}=\frac{1}{1}=1 .
$$

Question 3

The integral diverges to $-\infty$ because

$$
\int_{0}^{1} \frac{1}{x-1}=\lim _{A \rightarrow 1} \int_{0}^{A} \frac{1}{x-1}=\left.\lim _{A \rightarrow 1} \ln |x-1|\right|_{0} ^{A}=\lim _{A \rightarrow 1} \ln |A-1|=-\infty
$$

Question 4

The error for using the Trapezoid Rule with n subintervals is denoted E_{n}^{T} and we have the inequality

$$
E_{n}^{T} \leq \frac{K_{T}(b-a)^{3}}{12 n^{2}}
$$

where K_{T} denotes the maximum of the absolute value of the second derivative of f on the interval $[a, b]$. We have $f(x)=\sin (x)$, so $f^{\prime \prime}(x)=-\sin (x)$ and $\left|f^{\prime \prime}(x)\right|=|\sin (x)|$ has a maximum of 1 on $[\pi, 3 \pi]$. Therefore the error is bounded by

$$
E_{n}^{T} \leq \frac{(2 \pi)^{3}}{12 n^{2}}
$$

We want this error to be bounded above by $\frac{1}{10}$, so we have

$$
E_{n}^{T} \leq \frac{(2 \pi)^{3}}{12 n^{2}} \leq \frac{1}{10} \Longrightarrow n \geq \sqrt{\frac{20 \pi}{3}} \approx 14.4
$$

We know n must be an integer, so the smallest value of n for which this inequality holds is $n=15$.

9 AM

Question 1

Let $u=3 n$, and so as n goes to infinity, so does u. Then we have

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{3 n}\right)^{n}=\lim _{u \rightarrow \infty}\left(1+\frac{1}{u}\right)^{\frac{u}{3}}=\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{u}\right)^{u}\right)^{\frac{1}{3}}=e^{\frac{1}{3}}
$$

since we know that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{u}\right)^{u}=e$.

Question 2

Note that we know $\lim _{n \rightarrow \infty} n^{1 / n}=1$. Now we have

$$
\lim _{n \rightarrow \infty}(3 n)^{1 / n}=\lim _{n \rightarrow \infty} 3^{1 / n} \cdot \lim _{n \rightarrow \infty} n^{1 / n}=1 \cdot 1=1 .
$$

Question 3

The integral diverges to ∞ because

$$
\int_{-1}^{1} \frac{1}{x+1}=\lim _{A \rightarrow-1} \int_{A}^{1} \frac{1}{x+1}=\left.\lim _{A \rightarrow-1} \ln |x+1|\right|_{A} ^{1}=\lim _{A \rightarrow-1} \ln |2|-\ln |A+1|=\infty .
$$

Question 4

The error for using the Trapezoid Rule with n subintervals is denoted E_{n}^{T} and we have the inequality

$$
E_{n}^{T} \leq \frac{K_{T}(b-a)^{3}}{12 n^{2}}
$$

where K_{T} denotes the maximum of the absolute value of the second derivative of f on the interval $[a, b]$. We have $f(x)=e^{x}$, so $f^{\prime \prime}(x)=e^{x}$ and $\left|f^{\prime \prime}(x)\right|=e^{x}$ has a maximum of e on $[0,1]$. Therefore the error is bounded by

$$
E_{n}^{T} \leq \frac{e}{12 n^{2}}
$$

We want this error to be bounded above by $\frac{1}{10}$, so we have

$$
E_{n}^{T} \leq \frac{e}{12 n^{2}} \leq \frac{1}{10} \Longrightarrow n \geq \sqrt{\frac{5 e}{6}} \approx 1.4
$$

We know n must be an integer, so the smallest value of n for which this inequality holds is $n=2$.

10 AM

Question 1

Let $u=\frac{n}{2}$, and so as n goes to infinity, so does u. Then we have

$$
\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}=\lim _{u \rightarrow \infty}\left(1+\frac{1}{u}\right)^{2 u}=\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{u}\right)^{u}\right)^{2}=e^{2}
$$

since we know that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{u}\right)^{u}=e$.

Question 2

Note that we know $\lim _{n \rightarrow \infty} n^{1 / n}=1$. Now we have

$$
\lim _{n \rightarrow \infty}(n)^{1 / 2 n}=\left(\lim _{n \rightarrow \infty} n^{1 / n}\right)^{1 / 2}=1^{1 / 2}=1
$$

Question 3

The integral converges to 1 because

$$
\int_{1}^{\infty} \frac{1}{x^{2}}=\lim _{A \rightarrow \infty} \int_{1}^{A} \frac{1}{x^{2}}=\left.\lim _{A \rightarrow \infty} \frac{-1}{x}\right|_{1} ^{A}=\lim _{A \rightarrow \infty} 1-\frac{1}{A}=1 .
$$

Question 4

The error for using the Trapezoid Rule with n subintervals is denoted E_{n}^{T} and we have the inequality

$$
E_{n}^{T} \leq \frac{K_{T}(b-a)^{3}}{12 n^{2}}
$$

where K_{T} denotes the maximum of the absolute value of the second derivative of f on the interval $[a, b]$. We have $f(x)=\cos (x)$, so $f^{\prime \prime}(x)=-\cos (x)$ and $\left|f^{\prime \prime}(x)\right|=|\cos (x)|$ has a maximum of 1 on $[0,4 \pi]$. Therefore the error is bounded by

$$
E_{n}^{T} \leq \frac{(4 \pi)^{3}}{12 n^{2}}
$$

We want this error to be bounded above by $\frac{1}{10}$, so we have

$$
E_{n}^{T} \leq \frac{(4 \pi)^{3}}{12 n^{2}} \leq \frac{1}{10} \Longrightarrow n \geq \sqrt{\frac{80 \pi}{3}} \approx 28.8
$$

We know n must be an integer, so the smallest value of n for which this inequality holds is $n=29$.

11 AM

Question 1

Note that we know $\lim _{n \rightarrow \infty} n^{1 / n}=1$. Now we have

$$
\lim _{n \rightarrow \infty} \cos \left(2 \pi n^{1 / n}\right)=\cos \left(\lim _{n \rightarrow \infty} 2 \pi \cdot \lim _{n \rightarrow \infty} n^{1 / n}\right)=\cos (2 \pi \cdot 1)=\cos (2 \pi)=1
$$

Question 2

Note that we know $\lim _{n \rightarrow \infty} n^{1 / n}=1$. Let $u=2 n$, so u goes to ∞ as n goes to ∞. Now we have

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2 n}\right)^{\frac{1}{2 n}}=\lim _{u \rightarrow \infty}\left(\frac{1}{u}\right)^{\frac{1}{u}}=\frac{\lim _{u \rightarrow \infty} 1}{\lim _{u \rightarrow \infty} u^{1 / u}}=\frac{1}{1}=1
$$

Question 3

The integral converges to 1 because

$$
\int_{1}^{\infty} \frac{1}{x^{2}}=\lim _{A \rightarrow \infty} \int_{1}^{A} \frac{1}{x^{2}}=\left.\lim _{A \rightarrow \infty} \frac{-1}{x}\right|_{1} ^{A}=\lim _{A \rightarrow \infty} 1-\frac{1}{A}=1 .
$$

Question 4

The error for using the Trapezoid Rule with n subintervals is denoted E_{n}^{T} and we have the inequality

$$
E_{n}^{T} \leq \frac{K_{T}(b-a)^{3}}{12 n^{2}}
$$

where K_{T} denotes the maximum of the absolute value of the second derivative of f on the interval $[a, b]$. We have $f(x)=x^{2}$, so $f^{\prime \prime}(x)=2$ and $\left|f^{\prime \prime}(x)\right|=|2|$ has a maximum of 2 on $[1,2]$. Therefore the error is bounded by

$$
E_{n}^{T} \leq \frac{2}{12 n^{2}}
$$

We want this error to be bounded above by $\frac{1}{10}$, so we have

$$
E_{n}^{T} \leq \frac{2}{12 n^{2}} \leq \frac{1}{10} \Longrightarrow n \geq \sqrt{\frac{5}{3}}
$$

We know n must be an integer, so the smallest value of n for which this inequality holds is $n=2$.

12 PM

Question 1

Since $-1 \leq \sin (2 x) \leq 1$ we have

$$
\frac{-1}{n} \leq \frac{\sin (2 n)}{n} \leq \frac{1}{n}
$$

Since both $\frac{1}{n}$ and $\frac{-1}{n}$ converge to 0 as $n \rightarrow \infty$, by the squeeze theorem we have

$$
\lim _{n \rightarrow \infty} \frac{\sin (2 n)}{n}=0
$$

Question 2

Note that we know $\lim _{n \rightarrow \infty} n^{1 / n}=1$. Now we have

$$
\lim _{n \rightarrow \infty}\left(n^{2}\right)^{\frac{1}{2 n}}=\left(\lim _{n \rightarrow \infty} n^{1 / n}\right)^{1 / 2} \cdot\left(\lim _{n \rightarrow \infty} n^{1 / n}\right)^{1 / 2}=1 \cdot 1=1 .
$$

Question 3

The integral diverges to ∞ because

$$
\int_{1}^{\infty} \frac{1}{x}=\lim _{A \rightarrow \infty} \int_{1}^{A} \frac{1}{x}=\left.\lim _{A \rightarrow \infty} \ln |x|\right|_{1} ^{A}=\lim _{A \rightarrow \infty} \ln (A)=\infty
$$

Question 4

The error for using the Trapezoid Rule with n subintervals is denoted E_{n}^{T} and we have the inequality

$$
E_{n}^{T} \leq \frac{K_{T}(b-a)^{3}}{12 n^{2}}
$$

where K_{T} denotes the maximum of the absolute value of the second derivative of f on the interval $[a, b]$. We have $f(x)=e^{-x}$, so $f^{\prime \prime}(x)=e^{-x}$ and $\left|f^{\prime \prime}(x)\right|=\left|e^{-x}\right|$ has a maximum of 1 on $[0,1]$. Therefore the error is bounded by

$$
E_{n}^{T} \leq \frac{1}{12 n^{2}}
$$

We want this error to be bounded above by $\frac{1}{10}$, so we have

$$
E_{n}^{T} \leq \frac{1}{12 n^{2}} \leq \frac{1}{10} \Longrightarrow n \geq \sqrt{\frac{5}{6}}
$$

We know n must be an integer, so the smallest value of n for which this inequality holds is $n=1$.

1 PM

Question 1

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+3 n+7}{-n^{3}+n^{2}-n+1}=\lim _{n \rightarrow \infty} \frac{n^{2}\left(1+\frac{3}{n}+\frac{7}{n^{2}}\right)}{n^{3}\left(-1+\frac{1}{n}-\frac{1}{n^{2}}+\frac{1}{n^{3}}\right)}=\lim _{n \rightarrow \infty} \frac{-1}{n}=0 .
$$

Question 2

Note that we know $\lim _{n \rightarrow \infty} n^{1 / n}=1$. Now we have

$$
\lim _{n \rightarrow \infty}\left(n^{3}\right)^{1 / n}=\lim _{n \rightarrow \infty} n^{1 / n} \cdot \lim _{n \rightarrow \infty} n^{1 / n} \cdot \lim _{n \rightarrow \infty} n^{1 / n}=1 \cdot 1 \cdot 1=1 .
$$

Question 3

The integral diverges to ∞ because

$$
\int_{1}^{\infty} \frac{1}{x}=\lim _{A \rightarrow \infty} \int_{1}^{A} \frac{1}{x}=\left.\lim _{A \rightarrow \infty} \ln |x|\right|_{1} ^{A}=\lim _{A \rightarrow \infty} \ln (A)=\infty .
$$

Question 4

The error for using the Trapezoid Rule with n subintervals is denoted E_{n}^{T} and we have the inequality

$$
E_{n}^{T} \leq \frac{K_{T}(b-a)^{3}}{12 n^{2}}
$$

where K_{T} denotes the maximum of the absolute value of the second derivative of f on the interval $[a, b]$. We have $f(x)=e^{x}$, so $f^{\prime \prime}(x)=e^{x}$ and $\left|f^{\prime \prime}(x)\right|=e^{x}$ has a maximum of e^{2} on $[0,2]$. Therefore the error is bounded by

$$
E_{n}^{T} \leq \frac{e^{2}}{12 n^{2}}
$$

We want this error to be bounded above by $\frac{1}{10}$, so we have

$$
E_{n}^{T} \leq \frac{e^{2}}{12 n^{2}} \leq \frac{1}{10} \Longrightarrow n \geq \sqrt{\frac{5 e^{2}}{6}} \approx 2.5
$$

We know n must be an integer, so the smallest value of n for which this inequality holds is $n=3$.

