8 AM

Question 1

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{3^{n+1}(n+1)!}{(2 n+3)!} \cdot \frac{(2 n+1)!}{3^{n} n!}=\lim _{n \rightarrow \infty} \frac{3 n}{(2 n+3)(2 n+2)}=0<1
$$

so the series converges.

Question 2

We can rewrite this series as the geometric series $\sum_{n=1}^{\infty}(2 x)^{n}$ which converges when $|2 x|<1$ or when $|x|<\frac{1}{2}$. Thus the radius of convergence is $\frac{1}{2}$.

Question 3

This is just the sum of a geometric series starting at $n=2$ with $r=-1 / 3$, so the sum is

$$
\frac{\left(-\frac{1}{3}\right)^{2}}{1+\frac{1}{3}}=\frac{1}{12} .
$$

Question 4

Applying the ratio test we have

$$
\lim _{n \rightarrow \infty} \frac{x^{n+2}}{(n+2)!} \cdot \frac{(n+1)!}{x^{n+1}}=\lim _{n \rightarrow \infty} \frac{x}{n+2}=0<1
$$

Since this holds for all values of x, the radius of convergence is infinite, and thus the interval of convergence is $(-\infty, \infty)$.

9 AM

Question 1

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1}(n+1)!}{(2 n+2)!} \cdot \frac{(2 n)!}{2^{n} n!}=\lim _{n \rightarrow \infty} \frac{2(n+1)}{(2 n+2)(2 n+1)}=0<1
$$

so the series converges.

Question 2

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{n} x^{n}}=\lim _{n \rightarrow \infty} \frac{2 x}{n+1}=0<1 .
$$

Since this holds for all values of x, the radius of convergence is infinite.

Question 3

First note that by plugging 1 into the Taylor series for e^{x}, we have

$$
\sum_{n=0}^{\infty} \frac{1}{n!}=e .
$$

By subtracting the first term of the series and multiplying by 2 we get

$$
\sum_{n=1}^{\infty} \frac{2}{n!}=2(e-1)
$$

Question 4

We can rewrite this series as the geometric series $\sum_{n=1}^{\infty}(2 x)^{n}$ which converges when $|2 x|<1$ or when $|x|<\frac{1}{2}$. When $x=\frac{1}{2}$, we have $\sum_{n=1}^{\infty} 1$ which clearly does not converge, and when $x=-\frac{1}{2}$ we have $\sum_{n=1}^{\infty}(-1)^{n}$ which also clearly does not converge. Therefore the interval of convergence is $\left(-\frac{1}{2}, \frac{1}{2}\right)$.

10 AM

Question 1

Applying the ratio test, we have
$\lim _{n \rightarrow \infty} \frac{(2 n+3)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{(2 n+1)!}=\lim _{n \rightarrow \infty} \frac{(2 n+3)(2(n+1)) n^{n}}{(n+1)(n+1)^{n}}=\lim _{n \rightarrow \infty} 4 n+6 \cdot\left(\frac{n}{n+1}\right)^{n}=\lim _{n \rightarrow \infty} \frac{4 n+6}{e}=\infty$.
Therefore the series diverges.

Question 2

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{(n+1)!x^{n+1}}{2^{n+1}} \cdot \frac{2^{n}}{n!x^{n}}=\lim _{n \rightarrow \infty} \frac{n x}{2}=\infty
$$

for all values of x except for $x=0$. Therefore the radius of convergence is 0 .

Question 3

Note that we can rewrite the series as a two times a geometric series. Evaluating, we get

$$
\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}=2 \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=2 \cdot \frac{\frac{2}{3}}{1-\frac{2}{3}}=4
$$

Question 4

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{(n+1) x^{n+1}}{n x^{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{n} \cdot \lim _{n \rightarrow \infty} x=x
$$

which is less than one exactly when $x<1$. Therefore the radius of convergence is 1 , and all that remains is to check $x=1$ and $x=-1$. At $x=1$ we get the series $\sum_{n=2}^{\infty} n$ which clearly diverges, and similarly at $x=-1$ we get the series $\sum_{n=2}^{\infty}(-1)^{n} n$ which also clearly diverges since the terms do not go to 0 . Therefore the interval of convergence is $(-1,1)$.

11 AM

Question 1

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{(2 n+2)!}{2^{n+1}(n+1)!} \cdot \frac{2^{n} n!}{(2 n)!}=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{2(n+1)}=\infty
$$

so the series diverges.

Question 2

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{3^{n+1} x^{n+1}}{(2 n+2)!} \cdot \frac{(2 n)!}{3^{n} x^{n}}=\lim _{n \rightarrow \infty} \frac{3 x}{(2 n+2)(2 n+1)}=0<1
$$

for all values of x, so the radius of convergence is infinite.

Question 3

We can index the series to start at $n=0$ instead of $n=1$, and rewriting it we get

$$
\sum_{n=1}^{\infty} \frac{3}{(n-1)!}=\sum_{n=0}^{\infty} \frac{3}{n!}=3 \cdot \sum_{n=0}^{\infty} \frac{1}{n!}=3 e
$$

The last equality holds because $\sum_{n=0}^{\infty} \frac{1}{n!}$ is just the Taylor series for e^{x} evaluated at $x=1$.

Question 4

We can rewrite this series as the geometric series $\sum_{n=3}^{\infty}(3 x)^{n}$ which converges when $|3 x|<1$ or when $|x|<\frac{1}{3}$. When $x=\frac{1}{3}$, we have $\sum_{n=1}^{\infty} 1$ which clearly does not converge, and when
$x=-\frac{1}{3}$ we have $\sum_{n=1}^{\infty}(-1)^{n}$ which also clearly does not converge. Therefore the interval of convergence is $\left(-\frac{1}{3}, \frac{1}{3}\right)$.

12 PM

Question 1

Note that $\ln (x)$ is a strictly increasing function, so

$$
\lim _{n \rightarrow \infty} \ln (1+n)=\infty
$$

Since the terms of the series do not go to 0 , the series diverges.

Question 2

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1} x^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{2^{n} x^{n}}=\lim _{n \rightarrow \infty} \frac{2 x}{n+2}=0<1
$$

Since this holds for all values of x, the radius of convergence is infinite.

Question 3

We can rewrite the series as

$$
\sum_{n=1}^{\infty} \frac{2}{3^{n}}=2 \cdot \sum_{n=1}^{\infty} \frac{1}{3^{n}}=2 \cdot \frac{\frac{1}{3}}{1-\frac{1}{3}}=1
$$

where the last equality holds because $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ is a geometric series.

Question 4

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{x^{n+1}}{(2 n+2)!} \cdot \frac{(2 n)!}{x^{n}}=\lim _{n \rightarrow \infty} \frac{x}{(2 n+2)(2 n+1)}=0<1 .
$$

Since this holds for all values of x, the radius of convergence is infinite. Therefore the interval of convergence is $(-\infty, \infty)$.

1 PM

Question 1

This series will diverge because the terms do not go to 0 . For example,

$$
\lim _{n \rightarrow \infty} \frac{n^{n}}{n!} \geq n
$$

for all n, and $\lim _{n \rightarrow \infty} n=\infty$ so $\lim _{n \rightarrow \infty} \frac{n^{n}}{n!}=\infty$ as well.

Question 2

By factoring out a 3 from the numerator we can rewrite the series as a geometric series. This gives us

$$
\sum_{n=0}^{\infty} \frac{3^{n+1} x^{n}}{2^{n}}=3 \cdot \sum_{n=0}^{\infty}\left(\frac{3 x}{2}\right)^{n}
$$

which converges only when $\frac{3 x}{2}<1$ which happens when $x<\frac{2}{3}$. Therefore the radius of convergence is $\frac{2}{3}$.

Question 3

If we factor out 5 from the numerator, then we get five times the Taylor series for e^{x} evaluated at 1 . However since the sum starts at $n=2$, we have to subtract the first two terms. Therefore we have

$$
\sum_{n=2}^{\infty} \frac{5}{n!}=5 \cdot \sum_{n=2}^{\infty} \frac{1}{n!}=5(e-1-1)=5(e-2)
$$

Question 4

Applying the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{2} x^{n+1}}{n^{2} x^{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \cdot \lim _{n \rightarrow \infty} x=x
$$

which is less than one exactly when $x<1$. Therefore the radius of convergence is 1 , and all that remains is to check $x=1$ and $x=-1$. At $x=1$ we get the series $\sum_{n=2}^{\infty} n^{2}$ which clearly diverges, and similarly at $x=-1$ we get the series $\sum_{n=2}^{\infty}(-1)^{n} n^{2}$ which also clearly diverges since the terms do not go to 0 . Therefore the interval of convergence is $(-1,1)$.

