MATH 416, extra problems

1. Suppose a divides b and b divides a. Must $a=b$?
2. Suppose a divides b and b divides c. Must a divide c ?
3. Suppose a^{2} divides b^{2}. Must a divide b ?
4. Prove that if $p^{2} \in \mathbb{Z}$ is a prime number, then \sqrt{p} is not a rational number.
5. Let $N>0$ be given and suppose $x, y \in \mathbb{R}^{N}$ satisfy $\|x\|_{2}=\|y\|_{2}=1$.
a) Find x such that $\|x\|_{1}$ is as large as possible.
b) Find y such that $\|y\|_{\infty}$ is as small as possible.
6. Prove that $\|x-y\| \geq|\|x\|-\|y\||$ for any vectors x, y in a normed vector space X.
7. Find the 1-periodization of the function $f(x)=e^{-|x|}$.
8. For real $\epsilon>0$ and α, define the dilation operator D_{ϵ} and the translation operator T_{α}, which act on functions $f=f(t)$ of one real variable as follows:

$$
T_{\alpha}(u)(t)=u(t-\alpha) \quad D_{\epsilon}(u)(t)=\epsilon^{-1 / 2} u(t / \epsilon)
$$

a) Show that these are linear transformations with inverses $T_{\alpha}^{-1}=T_{-\alpha}$ and $D_{\epsilon}^{-1}=$ $D_{1 / \epsilon}$
b) Compute the composition $T_{\alpha}\left(D_{\epsilon}(F)\right)$ for a function $F=F(x)$.
9. Show that the set of functions $\{1, \sqrt{2} \sin (2 \pi n t), \sqrt{2} \cos (2 \pi n t): n=1,2,2 \ldots\}$ is orthonormal with respect to the Hermitean inner product.
10. Show that the set of functions $\{\sqrt{2} \sin (2 \pi n t): n=1,2,3, \ldots\}$ is orthonormal with respect to the real inner product.
11. Show that the set of functions $\{1, \sqrt{2} \cos (2 \pi n t): n=1,2,3, \ldots\}$ is orthonormal with respect to the real inner product.
12. Compute the sine-cosine Fourier series of the 1-periodic function $f(x)=$ $\cos ^{2}(2 \pi x)$.
13. Compute the complex exponential Fourier series of the 1-periodic function $\sin (2 \pi k t-d)$, where d is a constant real number, and k is an integer.
14. Write out explicitly the matrices for the 2×2 and 4×4 Discrete Fourier and Hartley transforms (F2, F4, H2 and H4).
15. Write out explicitly the matrices for the 1×1 Discrete Fourier, Hartley, and DCT-IV transforms (F1, H1 and CIV1).
16. Compute the complex exponential Fourier coefficients of the function $e^{i \alpha x} f(x)$, $x \in[0,1]$, in terms of the complex exponential Fourier coefficients of the function $f(x)$.

