MATH 416, extra problems

- 1. Suppose a divides b and b divides a. Must a = b?
- 2. Suppose a divides b and b divides c. Must a divide c?
- 3. Suppose a^2 divides b^2 . Must a divide b?
- 4. Prove that if $p^2 \in \mathbb{Z}$ is a prime number, then \sqrt{p} is not a rational number.
- 5. Let N > 0 be given and suppose $x, y \in \mathbb{R}^N$ satisfy $||x||_2 = ||y||_2 = 1$.
- a) Find x such that $||x||_1$ is as large as possible.
- b) Find y such that $||y||_{\infty}$ is as small as possible.

6. Prove that $||x - y|| \ge |||x|| - ||y|||$ for any vectors x, y in a normed vector space X.

7. Find the 1-periodization of the function $f(x) = e^{-|x|}$.

8. For real $\epsilon > 0$ and α , define the dilation operator D_{ϵ} and the translation operator T_{α} , which act on functions f = f(t) of one real variable as follows:

$$T_{\alpha}(u)(t) = u(t-\alpha)$$
 $D_{\epsilon}(u)(t) = \epsilon^{-1/2}u(t/\epsilon).$

a) Show that these are linear transformations with inverses $T_{\alpha}^{-1} = T_{-\alpha}$ and $D_{\epsilon}^{-1} = D_{1/\epsilon}$

b) Compute the composition $T_{\alpha}(D_{\epsilon}(F))$ for a function F = F(x).

9. Show that the set of functions $\{1, \sqrt{2}\sin(2\pi nt), \sqrt{2}\cos(2\pi nt) : n = 1, 2, 2...\}$ is orthonormal with respect to the Hermitean inner product.

10. Show that the set of functions $\{\sqrt{2}\sin(2\pi nt) : n = 1, 2, 3, ...\}$ is orthonormal with respect to the real inner product.

11. Show that the set of functions $\{1, \sqrt{2}\cos(2\pi nt) : n = 1, 2, 3, ...\}$ is orthonormal with respect to the real inner product.

12. Compute the sine-cosine Fourier series of the 1-periodic function $f(x) = \cos^2(2\pi x)$.

13. Compute the complex exponential Fourier series of the 1-periodic function $\sin(2\pi kt - d)$, where d is a constant real number, and k is an integer.

14. Write out explicitly the matrices for the 2×2 and 4×4 Discrete Fourier and Hartley transforms (F2, F4, H2 and H4).

15. Write out explicitly the matrices for the 1×1 Discrete Fourier, Hartley, and DCT-IV transforms (F1, H1 and CIV1).

16. Compute the complex exponential Fourier coefficients of the function $e^{i\alpha x} f(x)$, $x \in [0, 1]$, in terms of the complex exponential Fourier coefficients of the function f(x).