MATH 416, Spring 10, Practice Problems

1. Write explicitly the matrix of a 4×4 DFT. Apply it to a vector (0, 1, 0, -1).

2. Find the Lagrange polynomial through points (1, 2), (2, 5), (3, 4).

3. Suppose that f(x) = mx for some constant m. Show that for any sampling of f, the piecewise linear approximation exactly equals f.

4. Let $\{h(k): k \in \mathbb{Z}\}$ be a CQF sequence. Show that so is the sequence defined by

$$\forall k \in \mathbb{Z}, \quad g(k) = (-1)^k \overline{h(2-1-k)}.$$

5. Show that the set of functions $\{\sqrt{2}\sin(\pi nt) : n = 1, 2, 3, ...\}$ is orthonormal with respect to the real inner product: $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$.

6. Show that the set of vectors $\omega_n \in \mathbb{C}^N$, $n = 0, \ldots, N - 1$, where $\omega_n(k) = 1/\sqrt{N}e^{2\pi i nk/N}$, is an orthonormal basis for \mathbb{C}^N with respect to the complex inner product: $\langle v, w \rangle = \sum_{k=0}^{N-1} \overline{v(k)}w(k)$.

7. Prove that the $N \times N$ discrete Hartley transform matrix is symmetric and unitary.

8. Find the expansion in Chebyshev polynomials $T_0(x), T_1(x), T_2(x)$ of the function $f(x) = 1 + x^2$ dened for $x \in [-1, 1]$.

9. Compute the sine-cosine Fourier series of the 1-periodic function $f(x) = \cos^2(2\pi x)$.

10. Compute the complex exponential Fourier series of the 1-periodic function $\sin(2\pi kt - d)$, where d is a constant real number, and k is an integer.