MATH 416, Spring 10, Practice Problems

1. Write explicitely the matrix of a 4×4 DFT. Apply it to a vector $(0,1,0,-1)$.
2. Find the Lagrange polynomial through points $(1,2),(2,5),(3,4)$.
3. Suppose that $f(x)=m x$ for some constant m. Show that for any sampling of f, the piecewise linear approximation exactly equals f.
4. Let $\{h(k): k \in \mathbb{Z}\}$ be a CQF sequence. Show that so is the sequence defined by

$$
\forall k \in \mathbb{Z}, \quad g(k)=(-1)^{k} \overline{h(2-1-k)} .
$$

5. Show that the set of functions $\{\sqrt{2} \sin (\pi n t): n=1,2,3, \ldots\}$ is orthonormal with respect to the real inner product: $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$.
6. Show that the set of vectors $\omega_{n} \in \mathbb{C}^{N}, n=0, \ldots, N-1$, where $\omega_{n}(k)=$ $1 / \sqrt{N} e^{2 \pi i n k / N}$, is an orthonormal basis for \mathbb{C}^{N} with respect to the complex inner product: $\langle v, w\rangle=\sum_{k=0}^{N-1} \overline{v(k)} w(k)$.
7. Prove that the $N \times N$ discrete Hartley transform matrix is symmetric and unitary.
8. Find the expansion in Chebyshev polynomials $T_{0}(x), T_{1}(x), T_{2}(x)$ of the function $f(x)=1+x^{2}$ dened for $x \in[-1,1]$.
9. Compute the sine-cosine Fourier series of the 1-periodic function $f(x)=\cos ^{2}(2 \pi x)$.
10. Compute the complex exponential Fourier series of the 1-periodic function $\sin (2 \pi k t-d)$, where d is a constant real number, and k is an integer.
