MATH 416, HW 1, FALL 2014

1. Implement in Matlab the Gram-Schmidt orthogonalization algorithm.
2. Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors $x=$ $(1 ; 0 ; 0 ; 0), y=(1 ; 0 ; 1 ; 0)$, and $z=(1 ; 1 ; 1 ; 0)$, using both, your software and "by hand".
3. Let $\langle u, v\rangle=\sum_{i=1}^{d} u_{i} v_{i}$ be the inner product on the d-dimensional Euclidean vector space \mathbb{R}^{d}. What is the relation of this inner product and the angle between vectors u and v in \mathbb{R}^{d} ?
4. Describe the sets of vectors $x \in \mathbb{R}^{2}$, for which $\|x\|_{p}=r$, for any $r>0$, where $p=1,2, \infty$. Use this description to find a vector $z \in \mathbb{R}^{2}$ such that $\|z\|_{2}=1$ and $\|z\|_{1}$ is as large as possible. What is this maximal value of $\|z\|_{1}$?
5. Plot in Matlab unit discs in \mathbb{R}^{2} for the norms: $\|\ldots\|_{p}$ for $p_{1}=1.2$ and $p_{2}=2.5$.
