MATH 416, HW 1, FALL 2014

1. Implement in Matlab the Gram-Schmidt orthogonalization algorithm.

2. Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors x = (1;0;0;0), y = (1;0;1;0), and z = (1;1;1;0), using both, your software and "by hand".

3. Let $\langle u, v \rangle = \sum_{i=1}^{d} u_i v_i$ be the inner product on the *d*-dimensional Euclidean vector space \mathbb{R}^d . What is the relation of this inner product and the angle between vectors u and v in \mathbb{R}^d ?

4. Describe the sets of vectors $x \in \mathbb{R}^2$, for which $||x||_p = r$, for any r > 0, where $p = 1, 2, \infty$. Use this description to find a vector $z \in \mathbb{R}^2$ such that $||z||_2 = 1$ and $||z||_1$ is as large as possible. What is this maximal value of $||z||_1$?

5. Plot in Matlab unit discs in \mathbb{R}^2 for the norms: $\|...\|_p$ for $p_1 = 1.2$ and $p_2 = 2.5$.