MATH 416, HW 2, FALL 2014

1. We say that an infinite collection of vectors $\{e_1, \ldots, e_n, \ldots\} \subset \mathbb{R}^d$, $n \geq d$ is a spanning set for \mathbb{R}^d if every vector in \mathbb{R}^d can be represented as a finite linear combination of vectors from the set $\{e_1, \ldots, e_n, \ldots\}$. We say that a collection of vectors $\{f_1, \ldots, f_n, \ldots\} \subset \mathbb{R}^d$, $n \geq d$ is a finite frame for \mathbb{R}^d if there exist constants A, B > 0 (A < B) such that for every vector $x \in \mathbb{R}^d$ the following holds:

$$A||x||_{2}^{2} \leq \sum_{n=1}^{\infty} |\langle x, f_{k} \rangle|^{2} \leq B||x||_{2}^{2}.$$

a) Are infinite spanning sets necessarily frames for \mathbb{R}^d ? Prove or provide a counterexample.

b) Is every inifinite frame necessarily a spanning set for \mathbb{R}^d ? Prove or provide a counterexample.

2. Show that the collection of vectors (0, 1), $(\sqrt{3}/2, -1/2)$, $(-\sqrt{3}/2, -1/2)$ in \mathbb{R}^2 is a tight frame (i.e., a frame with the lower frame bound A equal to the upper frame bound B). Find its frame constant.

3. Provide your own (and interesting) example of a tight frame for \mathbb{R}^3 .

4. Show that $\{(1,0,0), (2,1,0), (3,2,1), (4,3,2)\}$, is a frame for \mathbb{R}^3 .