MATH 416, HW 5
Let $\{h(k): k=0, \ldots, L\},\{g(k): k=0, \ldots, L\}$ be a pair of Conjugate Quadrature Mirror Filters of finite length $L+1<\infty$. Let $c \in \mathbb{R}^{d}(d>L, d$ is even). Let $H(c)(n)=\sum_{k} h(k) c(k+2 n)$ and $G(c)(n)=\sum_{k} g(k) c(k+2 n)$. Thus, H and G can be identified with $(d / 2) \times d$ matrices, as in class. Let A^{*} denote the adjoint to a matrix A.

1) Show that $H H^{*}=G G^{*}=I d$.
2) Show that $H G^{*}=G H^{*}=0$.
