MATH 401, HW 7, FALL 2015

1. (12 points) Write your own Matlab code that solves a system of equations of the form $L U(x)=b$, where $b \in \mathbb{R}^{n}$ is a given vector of constants, U is an upper triangular $n \times n$ matrix, and L is a lower triangular $n \times n$ matrix. Apply this algorithm to a problem with $n=10$.

Please make sure that your code takes advantage of this specific structure of the equation, and that it DOES NOT multiply $L U$ into a single matrix.

Note that no inversion is needed for this problem. Note also that this problem is NOT about doing $L U$ factorization. Here, you simply assume that a factored matrix $L U$ is given to you.
2) (5 points) Find the computational complexity of the algorithm you designed for Problem 1, using the "big oh" notation, and assuming that the $L U$ factored matrix is given. Compare it to the computational complexity of the standard Gauss-Jordan scheme for solving a system of n equations with n unknowns, and draw conclusions.
3) (8 points) Given matrix

$$
A=\left(\begin{array}{cc}
10^{-20} & 1 \\
1 & 1
\end{array}\right)
$$

note that its $L U$ factorization is given by

$$
L=\left(\begin{array}{cc}
1 & 0 \\
10^{20} & 1
\end{array}\right), \quad U=\left(\begin{array}{cc}
10^{-20} & 1 \\
0 & 1-10^{20}
\end{array}\right) .
$$

Assume the following representation format for real numbers: each real number which can be written as $a . b c d e f g \ldots \times 10^{N}$, where $a, b, c, d \ldots \in\{0,1,2,3, \ldots, 9\}$ and $N \in \mathbb{Z}$, is represented as $a . b c \times 10^{N}$. For example, 10^{-20} is represented as 1.00×10^{-20}, and π is represented as 3.14×10^{0}. For arithmetic operations assume that they can be performed exactly and then the result is rounded to fit the new representation scheme. For example, $\pi \times 10^{-20}$ is represented by 3.14×10^{-20}, and $e \times 10^{20}$ is represented by 2.72×10^{20}.

In this new representation scheme compute the product of L and U, and compare it to A. Estimate the difference. Propose a remedy for the $L U$ factorization which will eliminate the observed difference.

