MATH 401, HW 8, FALL 2015

1. ($\mathbf{1 0}$ points) Adapt the proof of Theorem 5.7 from the textbook to show the following result:

Let $v_{1}, v_{2}, \ldots, v_{k}, k \leq n$, be a set of eigenvectors of a given $n \times n$ matrix A, such that for any eigenvalue λ of A, the subset of all these vectors belonging to λ is linearly independent. Then, the set of vectors $v_{1}, v_{2}, \ldots, v_{k}$ is linearly independent.

Please note that the above result is the last missing piece from our proof of Theorem 5.9, about a matrix A being diagonalizable if and only if the geometric multiplicity of every eigenvalue equals its algebraic multiplicity.
2. (5 points)Section 5.3, Problem 8.
3. ($\mathbf{1 0}$ points) Recall that trace of a matrix is the sum of diagonal elements: $\operatorname{Tr}(A)=\sum_{i=1}^{n} A_{i, i}$. Find the trace for all matrices in Section 5.1 Exercise 1. Next find all eigenvalues of these matrices. Is there a relationship between the eigenvalues and traces?

