
MATH 401, Graph Laplacian, FALL 2015

Let us start by observing the following relationship pertaining to the 2nd derivative

on the realline.

Fact 0.1. Let f be a twice differentiable function defined on (a, b) ⊂ R. Let x ∈ (a, b).

Then

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
.

The limit on the right hand side is sometimes called the second symmetric derivative

of f . Please note that the above fact asserts that the second symmetric derivative

exists provided the 2nd derivative in the classical sense exists. The opposite statement

is false (please find a counterexample).

Proof:

First, consider the limit:

lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
.

We now fix x, and treat h as variable. Apply Cauchy’s mean value theorem to obtain

that
f(x+ h)− 2f(x) + f(x− h)

h2
=

f ′(x+ k)− f ′(x− k)

2k
,

for some 0 < k < h. Now, however, note that

lim
k→0

f ′(x+ k)− f ′(x− k)

2k
= f ′′(x).

To show this last fact, observe that for any differentiable function g, we have:

lim
k→0

g(x+ k)− g(x− k)

2k
=

1

2

(

g(x+ k)− g(x)

k
+

g(x)− g(x− k)

k

)

=
1

2
(g′(x) + g′(x)) = g′(x).

Now, complete this argument by taking g = f ′.

Source of this proof: Antoni Zygmund, Trigonometric Series, Warszawa, 1935
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Another Proof:

We can also use de l’Hopital’s Rule to verify the existence of the limit:

lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
.

We start by noting that, both, numerator and denominator converge to 0. (Since f

is differentiable, it must be in particular continuous.) Moreover, the derivative of the

numerator and denominator with respect to h exist. They are f ′(x + h)− f ′(x− h)

and 2h, respectively. This shows that the derivative of the denominator is different

from 0 in the neighberhood of h = 0. The last assumption of de l’Hopital’s Rule that

remains to be checkd is the existence of the limit

lim
h→0

f ′(x+ h)− f ′(x− h)

2h
= lim

h→0

f ′(x+ h)− f(x) + f(x)− f ′(x− h)

2h
= f ′′(x),

which follows from the existence of f ′′(x).

Now, having defined this generalization of the 2nd derivative, we can use it to

define the analog of the 2nd derivative for a function defined on Z. In such case we

let h = 1, note that the limit is no longer necessary for a discrete case, and we observe

that

f ′′(N) = f(N + 1) + f(N − 1)− 2f(N), N ∈ Z.

We shall now notice that both N−1 and N +1 can be viewed as neighbors of N . De-

note the neighborhood of N by nbd(N). This leads us to the following interpretation

of 2nd derivative:

f ′′(N) =





∑

j∈nbd(N)

f(j)



−





∑

j∈nbd(N)

f(N)



 .

Observe that this definition of 2nd derivative makes sense for a function on any graph.

As such we shall call it the Graph Laplacian and denote by ∆. Using textbook

notation, we arrive at the following formula for the Graph Laplacian understood as

a matrix acting on vectors which are functions on a (undirected) graph:

∆ = A−D,
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where A denotes the adjacency matrix and D denotes the degree matrix. (Please note

that this is different form typical CS texts, where ∆ = D−A, for no good reason :) )

We can also generalize now this notation to include weighted (undirected) graphs,

i.e., graphs, where each edge (i, j) is assigned a number (weight) wi,j :

∆(f)(N) =





∑

j∈nbd(N)

wj,Nf(j)



−





∑

j∈nbd(N)

wj,Nf(N)



 ,

or, equivalently,

∆(m,n) =























wm,n m 6= n,m ∈ nbd(n)

−
∑

j∈nbd(n)wj,n m = n

0 m /∈ nbd(n)

.

Among some of the basic properties of the matrix ∆ we find that it is symmetric,

i.e.,

∆T = ∆,

and, provided the weights are chosen to be non-negative, the Laplacian is negative

semidefinite, i.e.,

∀v ∈ R
d, 〈∆v, v〉 ≤ 0.

These will come in handy when we shall want to compute eigendecompositions of ∆.
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