
MATH 141, FALL 2015, A note on Limit Comparison Test

Limit Comparison Test (Theorem 9.14) can be stated a little differently than it is

in the textbook.

Theorem 0.1 (Limit Comparison Test). Let
∑

∞

n=1
an and

∑
∞

n=1
be positivie series

(an, bn > 0). If

lim
n→∞

an
bn

= L,

where 0 < L < ∞, then either both series converge, or both series diverge.

The above result is equivalent to Theorem 9.14, as one easily notices that 0 < L <

∞ if and only if 0 < 1

L
< ∞. As such, it is not allowing us to analyze any new

examples. The major reson for stating this above formulation is to show that the

roles of numerator and denominator are interchangeable in LCT.

The next result, however, is a new observation, for which the roles of an and bn

are, clearly, no longer interchangeable.

Theorem 0.2 (Limit Comparison Test 2). Let
∑

∞

n=1
an and

∑
∞

n=1
bn be positivie

series(an, bn > 0). Assume

lim
n→∞

an
bn

= L.

a) If L = 0 and
∑

∞

n=1
bn converges then

∑
∞

n=1
an also converges.

b) If L = ∞ and
∑

∞

n=1
bn diverges then

∑
∞

n=1
an also diverges.

Example 0.3. Let us consider the following series:

∞∑

n=1

1

n2 ln(n)
.

One is, naturally, tempted to compare this to the series

∞∑

n=1

1

n2
,

1



which, as we know, converges. However, it is easy to see that

1/n2

1/(n2 ln(n))
=

n2 ln(n)

n2
→ ∞,

and
1/(n2 ln(n))

1/n2
=

n2

n2 ln(n)
→ 0,

as n → ∞. Thus, the Limit Comparison Theorem from the textbook does not work

anymore. But part (a) of the Limit Comparison Test 2 will provide us with an

answer. Indeed, observe that from the last limit above, we can conclude that the

series
∑

1/(n2 ln(n)) converges, because
∑

1/n2 converges.

Example 0.4. Similarly, we can consider the following series:
∞∑

n=1

ln(n)

n
.

Since,
ln(n)/n

1/n
= ln(n) → ∞,

and because
∑

1/n diverges, from part (b) of the Limit Comparison Test 2, we can

conclude that
∑

ln(n)/n also diverges.
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