MATH 630, Spring 2007, MIDTERM

1) Let $\left\{n_{k}: k=1, \ldots\right\} \subseteq \mathbb{N}$ be a subsequence of natural numbers. Show that

$$
m\left(\left\{x: \liminf _{k \rightarrow \infty} \sin \left(n_{k} x\right)>0\right\}\right)=0 .
$$

2) Let $k \in L_{m}^{1}(\mathbb{R})$ be a non-negative function with $\int_{\mathbb{R}} k=1$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded and continuous function. Show that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} n k(n x) g(x) d x=g(0)
$$

3) Let (X, \mathcal{Z}, μ) be a measure space and let $\left\{A_{n}: n=1, \ldots\right\} \subseteq \mathcal{Z}$. Assume that $A_{n} \subseteq A_{n+1}, n \in \mathbb{N}$, ane let $A=\bigcup_{n=1}^{\infty} A_{n}$. Prove that $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
4) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f \in L_{m}^{1}(\mathbb{R})$. Let $A_{\alpha}=\{x \in \mathbb{R}: f(x)>\alpha\}, \alpha>0$. Prove that

$$
m\left(A_{\alpha}\right) \leq \frac{1}{\alpha} \int_{\mathbb{R}} f
$$

5) Problem 3.13
6) Problem 3.22
