MATH 141, FALL 2014, A complete non-trivial example of partial fractions

Consider the following integral

$$
I=\int \frac{x^{5}+4 x^{4}+7 x^{3}+12 x^{2}+13 x+7}{x^{4}+4 x^{3}+5 x^{2}+4 x+4} d x
$$

As the degree of the numerator is larger than the degree of the denominator, we must divide the first by the latter:

$$
x^{5}+4 x^{4}+7 x^{3}+12 x^{2}+13 x+7: x^{4}+4 x^{3}+5 x^{2}+4 x+4,
$$

and we note that the quotient is x and the reminder is $2 x^{3}+8 x^{2}+9 x+7$. Hence, $I=\int x d x+\int \frac{2 x^{3}+8 x^{2}+9 x+7}{x^{4}+4 x^{3}+5 x^{2}+4 x+4} d x=\frac{1}{2} x^{2}+\int \frac{2 x^{3}+8 x^{2}+9 x+7}{x^{4}+4 x^{3}+5 x^{2}+4 x+4} d x$.

Next, we need to identify the factorization of the denominator. As it is a polynomial with integer coefficients, and the leading coefficient being 1 , we should look for one of its roots to be a divisor of the constant term. Thanks to the factor theorem, we thus conclude that $x+2$ must be a factor of the denominator. Dividing $x^{4}+4 x^{3}+5 x^{2}+4 x+4$ by $x+2$ results in $x^{3}+2 x^{2}+x+2$. We again look for its roots among the divisors of the constant term, and note that $x+2$ must be a factor of $x^{3}+2 x^{2}+x+2$. Dividing again by $x+2$ results in $x^{2}+1$. This process can be summarized as:

$$
x^{4}+4 x^{3}+5 x^{2}+4 x+4=(x+2)^{2}\left(x^{2}+1\right) .
$$

Thus, we have factored the denominator completely, as Vieta's formulas tell us that for the polynomial $x^{2}+1$ its discriminant is -4 , and thus this polynomial has no real roots.

The next step is to write the function

$$
\frac{2 x^{3}+8 x^{2}+9 x+7}{(x+2)^{2}\left(x^{2}+1\right)}
$$

as a sum of its partial fractions:

$$
\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C x+D}{x^{2}+1}
$$

Thus, we need to solve the following system of equations:

$$
\begin{array}{r}
A+C=2, \\
2 A+B+4 C+D=8, \\
A+4 C+4 D=9 \\
2 A+B+4 D=7 .
\end{array}
$$

This system of equations is solved in the usual way and provides us with the following solution:

$$
A=1, \quad B=1, \quad C=1, \quad D=1
$$

Therefore, we note that
$I=\frac{1}{2} x^{2}+\int \frac{2 x^{3}+8 x^{2}+9 x+7}{x^{4}+4 x^{3}+5 x^{2}+4 x+4} d x=\frac{1}{2} x^{2}+\int\left(\frac{1}{x+2}+\frac{1}{(x+2)^{2}}+\frac{x+1}{x^{2}+1}\right) d x$.
As we can integrate all the functions directly by taking antderivatives, we have

$$
I=\frac{1}{2} x^{2}+\ln (|x+2|)-\frac{1}{x+2}+\arctan (x)+C
$$

