MATH 630, Spring 2007, SAMPLE FINAL

1) Let $f:[0,1] \to \mathbb{R}$ be an increasing right continuous function with the property that

$$\forall g \in C([0,1]), \quad \int_0^1 g \, df = 0.$$

Prove that f is a constant function.

2) Let $f : [a, b] \to \mathbb{R}$ be a differentiable function and suppose $f' \in BV([a, b])$. Prove that $f' \in C([a, b])$.

3) Let (X, \mathcal{A}, μ) be a measure space. Let $1 \leq p \leq \infty$, 1/p + 1/q = 1. Assume that $\{f_n : n = 1, \ldots\} \subseteq L^p_{\mu}(X)$, $\{g_n : n = 1, \ldots\} \subseteq L^q_{\mu}(X)$ are such that $f_n \to f$ in $L^p_{\mu}(X)$ and $g_n \to g$ in $L^q_{\mu}(X)$. Prove that $f_n g_n \to fg$ in $L^1_{\mu}(X)$.

4) Let (X, \mathcal{A}, μ) be a finite measure space. Assume that $\{f_n : n = 1, \ldots\} \subseteq L^{2007}_{\mu}(X)$ is bounded in the norm $L^{2007}_{\mu}(X)$ and that $f_n \to f \mu$ -a.e. Show that $f_n \to f$ in $L^1_{\mu}(X)$.

5) Let (X, \mathcal{A}, μ) be a finite measure space. Show that $L^p_{\mu}(X) \subseteq L^r_{\mu}(X)$, for any $1 \leq r \leq p \leq \infty$. Show that the assumption $\mu(X) < \infty$ is necessary.