MATH 630, Spring 2007, SAMPLE FINAL

1) Let $f:[0,1] \rightarrow \mathbb{R}$ be an increasing right continuous function with the property that

$$
\forall g \in C([0,1]), \quad \int_{0}^{1} g d f=0
$$

Prove that f is a constant function.
2) Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function and suppose $f^{\prime} \in B V([a, b])$. Prove that $f^{\prime} \in C([a, b])$.
3) Let (X, \mathcal{A}, μ) be a measure space. Let $1 \leq p \leq \infty, 1 / p+1 / q=1$. Assume that $\left\{f_{n}: n=1, \ldots\right\} \subseteq L_{\mu}^{p}(X),\left\{g_{n}: n=1, \ldots\right\} \subseteq L_{\mu}^{q}(X)$ are such that $f_{n} \rightarrow f$ in $L_{\mu}^{p}(X)$ and $g_{n} \rightarrow g$ in $L_{\mu}^{q}(X)$. Prove that $f_{n} g_{n} \rightarrow f g$ in $L_{\mu}^{1}(X)$.
4) Let (X, \mathcal{A}, μ) be a finite measure space. Assume that $\left\{f_{n}: n=1, \ldots\right\} \subseteq$ $L_{\mu}^{2007}(X)$ is bounded in the norm $L_{\mu}^{2007}(X)$ and that $f_{n} \rightarrow f \mu$-a.e. Show that $f_{n} \rightarrow f$ in $L_{\mu}^{1}(X)$.
5) Let (X, \mathcal{A}, μ) be a finite measure space. Show that $L_{\mu}^{p}(X) \subseteq L_{\mu}^{r}(X)$, for any $1 \leq r \leq p \leq \infty$. Show that the assumption $\mu(X)<\infty$ is necessary.

