Math 141, Fall 2011, Midterm 1
Problem 1)
(12 points)
The length L of a curve given parametrically by $(x(t), y(t))$ for $a \leq t \leq b$ is $\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$.
Here, $x(t)=e^{t} \sin (t)$ and $y(t)=e^{t} \cos (t)$ for $0 \leq t \leq \pi$.
So we have $x^{\prime}(t)=e^{t} \cos (t)+e^{t} \sin (t)=e^{t}(\cos (t)+\sin (t))$ and
$y^{\prime}(t)=e^{t} \cos (t)-e^{t} \sin (t)=e^{t}(\cos (t)-\sin (t))$ for $0 \leq t \leq \pi$.
So $L=\int_{0}^{\pi} \sqrt{\left(e^{t}(\cos (t)+\sin (t))\right)^{2}+\left(e^{t}(\cos (t)-\sin (t))\right)^{2}} d t$
(8 points)
$=\int_{0}^{\pi} e^{t} \sqrt{\cos ^{2}(t)+\sin ^{2}(t)+2 \cos (t) \sin (t)+\cos ^{2}(t)+\sin ^{2}(t)-2 \cos (t) \sin (t)} d t$
$=\int_{0}^{\pi} e^{t} \sqrt{2\left(\cos ^{2}(t)+\sin ^{2}(t)\right)} d t$, and since $\cos ^{2}(t)+\sin ^{2}(t)=1$, we have
that
$L=\int_{0}^{\pi} \sqrt{2} e^{t}=\sqrt{2}\left(e^{\pi}-e^{0}\right)=\sqrt{2}\left(e^{\pi}-1\right)$.
(5 points)
To find the starting and ending points of this curve, we simply plug in the first and last time values for t in $(x(t), y(t))$ to get that the starting point is $(x(0), y(0))=(0,1)$ and that the ending point is $(x(\pi), y(\pi))=\left(0, e^{-\pi}\right)$.

