Problem 1

Find the length L of the curve given parametrically by:

$$
\left\{\begin{array}{l}
x=\sin t-t \cos t \\
y=t \sin t+\cos t
\end{array} \quad 0 \leq t \leq \pi\right.
$$

What is the starting point of this curve? What is the ending point of this curve? Find at least one intermediate point and sketch the graph of the curve.

Solution:

Recall the formula for the length of a curve given parametrically:

$$
\begin{equation*}
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \tag{2}
\end{equation*}
$$

Here we have

$$
\begin{align*}
\frac{d x}{d t} & =\cos t+t \sin t-\cos t \\
& =t \sin t \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d y}{d t} & =-\sin t+t \cos t+\sin t \\
& =t \cos t \tag{3}
\end{align*}
$$

Then

$$
\begin{align*}
L & =\int_{0}^{\pi} \sqrt{(t \sin t)^{2}+(t \cos t)^{2}} d t \\
& =\int_{0}^{\pi} \sqrt{t^{2}\left(\sin ^{2} t+\cos ^{2} t\right)} d t \\
& =\int_{0}^{\pi} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{\pi}=\frac{\pi^{2}}{2} \tag{7}
\end{align*}
$$

The starting point is given by $t=0$:

$$
\left\{\begin{array}{l}
x=\sin 0-0 \cos 0=0, \tag{3}\\
y=0 \sin 0+\cos 0=1,
\end{array} \Rightarrow \text { the starting point is }(0,1)\right.
$$

The ending point is given by $t=\pi$:

$$
\left\{\begin{array}{l}
x=\sin \pi-\pi \cos \pi=\pi, \tag{3}\\
y=\pi \sin \pi+\cos \pi=-1,
\end{array} \Rightarrow \text { the end point is }(\pi,-1)\right.
$$

Any intermediate point will give a good indication of what the curve should look like. For example, at $t=\frac{\pi}{2}$ the point is $\left(1, \frac{\pi}{2}\right)$.
The sketch of the curve should look roughly like this:

(4)

