Problem 4 Solution

Question:
Find the particular solution of the following differential equation:

$$
\frac{d y}{d x}+\sin (x)=y \sin (x),
$$

with the condition that $y(0)=1$.
Solution :
First recognize that the differential equation is a first order linear and put it into standard form

$$
\begin{equation*}
\frac{d y}{d x}-y \sin (x)=\sin (x) . \tag{3pts}
\end{equation*}
$$

Then find the integrating factor, which is

$$
\begin{equation*}
e^{\int-\sin (x) d x}=e^{\cos (x)} . \tag{5pts}
\end{equation*}
$$

Multiple through by the integrating factor and simplify the left hand side.

$$
\begin{align*}
e^{\cos (x)} \frac{d y}{d x}-y e^{\cos (x)} \sin (x) & =-e^{\cos (x)} \sin (x) \\
\frac{d}{d x}\left(y e^{\cos (x)}\right) & =-e^{\cos (x)} \sin (x) \tag{7pts}
\end{align*}
$$

integrate both sides

$$
y e^{\cos (x)}=-\int e^{\cos (x)} \sin (x) d x
$$

and use a u-substition on the right hand side

$$
\begin{aligned}
u & =\cos (x) \\
d x & =-\sin (x) d x,
\end{aligned}
$$

to get

$$
\begin{equation*}
y e^{\cos (x)}=e^{\cos (x)}+C . \tag{8pts}
\end{equation*}
$$

Then use the initial condition $x=0, y=1$ to find the value $C=0$, so the final answer is

$$
\begin{equation*}
y=1 \text {. } \tag{2pts}
\end{equation*}
$$

