Midterm 4, Problem 1

December 11, 2013

Problem (25pts): Determine whether the following series converge (absolutely/conditionally). If they converge, find their value.

1. $\sum_{k=2}^{\infty} \frac{(-1)^{k} 5^{k-1}}{3^{2 k}}$
2. $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n}$

Solution:

Part 1. 15 points.
(2pts): We have

$$
\sum_{k=2}^{\infty} \frac{(-1)^{k} 5^{k-1}}{3^{2 k}}=\frac{1}{5} \sum_{k=2}^{\infty}\left(\frac{-5}{9}\right)^{k}
$$

(6pts): This is a geometric series with ratio $r=\frac{-5}{9}$ and first term $a=\frac{5}{81}$. [3 points given for each item.]
(3pts): Thus, since $|r|<1$, the series converges absolutely.
(4pts): In particular, it converges to

$$
\frac{a}{1-r}=\frac{\frac{5}{81}}{1-\left(-\frac{5}{9}\right)}=\frac{5}{126}
$$

(Note: Students may alternatively use the root or ratio tests to determine convergence of the series. Only doing this, without finding the value of the series, will merit 8 points.)

Part 2. 10 points.
(2pts): We use the Integral Test to determine the behavior of the series.
(2pts): Let $f(x)=\frac{1}{x \cdot \ln (x)}$. Then, f is decreasing, integrable, and agrees with the sequence that we are summing. Thus, the original sum converges iff $\int_{x=2}^{\infty} \frac{\mathrm{dx}}{x \cdot \ln (x)}$ converges.
(5pts): Now,

$$
\begin{aligned}
\int_{x=2}^{\infty} \frac{\mathrm{dx}}{x \cdot \ln (x)} & =\lim _{b \rightarrow \infty}\left(\int_{x=2}^{b} \frac{\mathrm{dx}}{x \cdot \ln (x)}\right) \\
& =\lim _{b \rightarrow \infty}(\ln \ln b-\ln \ln 2) \\
& =+\infty, \quad \text { i.e. diverges. }
\end{aligned}
$$

(1pts): Thus, the original sum diverges.

