Math 141 Midterm 1 Question 2 Solution

September 24, 2014

Question: Find the largest set which contains 0 and on which the funcion $f(x)=x^{9}+6 x^{3}+2 x-10$ has an inverse. Find the derivative of f^{-1} (the inverse of f) at $y=-10$.

Solution:

Take the derivative first

$$
f^{\prime}(x)=9 x^{8}+18 x^{2}+2 \quad 4 \mathrm{pts}
$$

See that

$$
f^{\prime}(x)>0
$$

5 pts
and thus $f(x)$ is always increasing.
Thus the largest set which contains 0 is

$$
(-\infty, \infty)
$$

5 pts
To find $\left(f^{-1}\right)^{\prime}(-10)$ use the formula

$$
\left(f^{-1}\right)^{\prime}(c)=\frac{1}{f^{\prime}(a)}
$$

5 pts
where $f(a)=c$.
By inspection find a such that $f(a)=-10$

$$
-10=a^{9}+6 a^{3}+2 a-10
$$

4 pts
so $a=0$.
Therefore we have

$$
\left(f^{-1}\right)^{\prime}(-10)=\frac{1}{f^{\prime}(0)}=\frac{1}{2}
$$

2 pts

