Midterm 1 Problem 2.
(graded out of 20 pts)
Find the integral

$$
\int x^{9} e^{x^{5}} d x
$$

Solution I

Choose the correct substitution

$$
\begin{equation*}
u=x^{5}, \quad d u=5 x^{4} d x \tag{8pts}
\end{equation*}
$$

The resulting integral equals

$$
\begin{equation*}
\frac{1}{5} \int u e^{u} d u \tag{4pts}
\end{equation*}
$$

and can be integrated by parts:

$$
\begin{equation*}
\frac{1}{5} \int u e^{u} d u=\frac{1}{5} u e^{u}-\frac{1}{5} \int e^{u} d u=\frac{1}{5} u e^{u}-\frac{1}{5} e^{u}+C \tag{6pts}
\end{equation*}
$$

back to the original variable x :

$$
\begin{equation*}
=\frac{1}{5} e^{x^{5}}\left(x^{5}-1\right)+C \tag{2pts}
\end{equation*}
$$

Solution II

Rewrite the integral as

$$
\frac{1}{5} \int x^{5}\left[5 x^{4} e^{x^{5}}\right] d x
$$

then integrate by parts with

$$
\begin{equation*}
u=x^{5} \text { and } d v=\left[5 x^{4} e^{x^{5}}\right] d x, v=e^{x^{5}} \tag{12pts}
\end{equation*}
$$

to get

$$
\begin{gather*}
\frac{1}{5} x^{5} e^{x^{5}}-\frac{1}{5} \int 5 x^{4} e^{x^{5}} d x= \\
\frac{1}{5} x^{5} e^{x^{5}}-\frac{1}{5} e^{x^{5}}+C \tag{8pts}
\end{gather*}
$$

REMARK ON GRADING: iterative integration by parts with u's and v's different from the above without mistakes earns you 12 points. Each computational mistake takes off -2 pts, each mistake in integration -4 pts.

