Rubric for Midterm 2, Problem 2

October 18, 2013

PART A. 15 POINTS.

$$
\int \frac{1}{x^{2}-3 x+3} d x=\int \frac{1}{\left(x-\frac{3}{2}\right)^{2}+\frac{3}{4}} d x \quad[4 \text { points }]
$$

Make $u=x-\frac{3}{2}$. Then $d u=d x$, so

$$
\int \frac{1}{\left(x-\frac{3}{2}\right)^{2}+\frac{3}{4}} d x=\int \frac{1}{u^{2}+\frac{3}{4}} d u \quad[5 \text { points }]
$$

Now, there are two ways to proceed.
(i). Recall that

$$
\int \frac{1}{u^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{u}{a}\right)+c \quad[3 \text { points }]
$$

so, with $a=\frac{\sqrt{3}}{2}$,

$$
\begin{array}{rll}
\int \frac{1}{u^{2}+\frac{3}{4}} d x & =\frac{1}{\frac{\sqrt{3}}{2}} \arctan \left(\frac{u}{\frac{\sqrt{3}}{2}}\right)+c & {[2 \text { points }]} \\
& =\frac{2}{\sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}}\left(x-\frac{3}{2}\right)\right)+c & {[1 \text { point, final answer }]}
\end{array}
$$

Alternatively, (ii). Do the substitution $v=\frac{2}{\sqrt{3}} u$. The substitution into the integral and simplification is worth [3 points], and the evaluation to $\frac{2}{\sqrt{3}} \arctan (v)+$ c is worth [2 points]. Rewriting as a function of x gives the final answer and is worth [1 point].

PART B. 10 POINTS.

We want to evaluate $\int \frac{1}{x\left(1+(\ln (x))^{2}\right)} d x$.
Make $u=\ln (x)$. Then $d u=\frac{1}{x} d x$. [5 points]. Then,

$$
\begin{array}{rlrl}
\int \frac{1}{x\left(1+(\ln (x))^{2}\right)} d x & =\int \frac{1}{1+u^{2}} d u & & {[1 \text { points }]} \\
& =\arctan (u)+c & & {[3 \text { points }]} \\
& =\arctan (\ln (x))+c & {[1 \text { point, final answer }] .}
\end{array}
$$

