Problem 2

Evaluate the following indefinite integrals
(a) $\int \log _{6}(x) d x$
(b) $\int x^{3} \sin \left(x^{2}\right) d x$

Solution:

(a) Recall the change of base formula for logarithms:

$$
\log _{a}(x)=\frac{\ln x}{\ln a}
$$

Then this integral becomes

$$
\begin{equation*}
\int \log _{6}(x) d x=\int \frac{\ln x}{\ln 6} d x=\frac{1}{\ln 6} \int \ln x d x \tag{3pts}
\end{equation*}
$$

Apply integration by parts using the following substitutions:

$$
\begin{align*}
u & =\ln x, & d v & =d x \\
d u & =\frac{1}{x} d x, & v & =x \tag{3pts}
\end{align*}
$$

So by integration by parts:

$$
\begin{equation*}
\int \log _{6}(x) d x=\frac{1}{\ln 6}\left(x \ln x-\int d x\right)=\frac{1}{\ln 6}(x \ln x-x)+C \tag{4pts}
\end{equation*}
$$

Note: Omission of the arbitrary constant C results in a deduction of one point.
(b) There are two common ways to solve this problem: either do a change of variables (u-substitution) first and then do integration by parts, or do integration by parts first and then do a change of variables. We will outline both solutions.
(i) Begin with the following substitution:

$$
\begin{align*}
u & =x^{2}, \\
d u & =2 x d x . \tag{5pts}
\end{align*}
$$

Then the integral becomes

$$
\int x^{3} \sin \left(x^{2}\right) d x=\frac{1}{2} \int u \sin (u) d u
$$

Now we may use integration by parts. Let

$$
\begin{align*}
v & =u, & d w & =\sin u d u \tag{6pts}\\
d v & =d u, & w & =-\cos u
\end{align*}
$$

So by the integration by parts formula:

$$
\begin{align*}
\int x^{3} \sin \left(x^{2}\right) d x & =\frac{1}{2}\left(-u \cos u+\int \cos u d u\right) \\
& =\frac{1}{2}(-u \cos u+\sin u)+C \\
& =\frac{1}{2}\left(-x^{2} \cos \left(x^{2}\right)+\sin \left(x^{2}\right)\right)+C \tag{4pts}
\end{align*}
$$

Note again that forgetting the constant C will result in a deduction of one point.
(ii) Alternatively begin with the following substitutions:

$$
\begin{array}{cl}
u=x^{2}, & d v=x \sin \left(x^{2}\right) d x \\
d u=2 x d x, & v=\int x \sin \left(x^{2}\right) d x \tag{6pts}
\end{array}
$$

Notice that v here is not obvious. To solve explicitly let

$$
\begin{aligned}
w & =x^{2} \\
d w & =2 x d x
\end{aligned}
$$

Then

$$
\begin{equation*}
v=\int x \sin \left(x^{2}\right) d x=\frac{1}{2} \int \sin w d w=\frac{-1}{2} \cos \left(x^{2}\right)+C . \tag{5pts}
\end{equation*}
$$

Hence

$$
\begin{align*}
\int x^{3} \sin \left(x^{2}\right) d x & =\frac{-x^{2}}{2} \cos \left(x^{2}\right)+\int x \cos \left(x^{2}\right) d x \\
& =\frac{1}{2}\left(-x^{2} \cos \left(x^{2}\right)+\sin \left(x^{2}\right)\right)+C \tag{4pts}
\end{align*}
$$

As before, C is worth one point.

