1. (20 points) Find the sum of the following series.

$$
\sum_{n=3}^{\infty}\left(\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}}\right)
$$

Solution: This is a telescoping series. The partial sum is given by

$$
s_{j}=\frac{1}{3^{3}}-\frac{1}{4^{3}}+\frac{1}{4^{3}}-\frac{1}{5^{3}}+\cdots+\frac{1}{\left((j+2)^{3}\right.}-\frac{1}{(j+3)^{3}}=\frac{1}{3^{3}}-\frac{1}{(j+3)^{3}}
$$

So, the infinite sum is

$$
\sum_{n=3}^{\infty}\left(\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}}\right)=\lim _{j \rightarrow \infty} s_{j}=\lim _{j \rightarrow \infty}\left(\frac{1}{3^{3}}-\frac{1}{(j+3)^{3}}\right)=\frac{1}{27}
$$

How points are distributed:

1. Use telescoping - 5pts
2. Correct partial sum -12 pts
3. Get $1 / 3^{3}-17 \mathrm{pts}$
4. Get $1 / 27$ (rather than $1 / 9$) -20 pts
