Exam 4 Problem 2:
In order to find the interval of convergence of
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first the radius of convergence is calculated using either the generalized root or ratio test.

Using the ratio test, the power series converges for values of x such that
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We consider the limits of sequences separately, lim, oo 17 = lim, 00 ﬁ =1.

Then let f(z) = % and use L’Hopital’s rule and the continuity of f to conclude that
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Thus we get that the radius of convergence is 1. A similar argument using the root test gives the same answer by
calculating lim,,_,[In(n)]*/™ by taking the limit of the equivalent real-variable function.

This means that there’s absolute convergence on the interval —1 <z < 1. When z =1:
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is an alternating series. % is a decreasing sequence since its equivalent real-variable function % has a negative

derivative 17;@) is negative for x > e. Using a comparison, we obtain
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So by the alternating series test, the series converges conditionally at x = 1.

When x = —1:
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by the p-series test, hence the series diverges at « = 1. This also means that the series does not converge absolutely
at v = —1.

Therefore the interval of convergence is (—1,1].

e 10 points for finding the radius of convergence
— 2 points for using ratio or root test
— 2 points for using absolute values where necessary

— 4 points for correctly evaluating limits in ratio or root test computation, only 2 points without correct
justification

— 2 points for getting that the radius is 1
e 7 points for analysis of series at x = 1

— 4 for correct use of alternating series test: 2 points for showing the sequence decreases, 2 points for showing
the sequence converges to 0

— 3 points for concluding that the convergence is conditional, only 1 point if type of convergence is not
specified



e 7 points for analysis of series at x = —1
— 5 for for making a valid comparison to a divergent series or correctly using the integral test
— 2 points for stating that the series diverges

e 1 point for writing the interval (—1, 1]



