Solution of Problem 3 from Midterm 3

December 1, 2009

There are several ways to do this problem. Here are two methods: METHOD 1:

Use that the sine is a bounded function

$$-1 \le \sin(n) \le 1$$

$$1 \le 2 + \sin(n) \le 3 \quad (5 \text{ points})$$

In particular, this implies this is a positive series.

$$\frac{1}{n^2 - 5} \le \frac{2 + \sin(n)}{n^2 - 5} \le \frac{3}{n^2 - 5},$$

by the Comparison Theorem, convergence of

$$\sum_{n=4}^{\infty} \frac{3}{n^2 - 5} \quad \text{implies convergence of} \quad \sum_{n=4}^{\infty} \frac{2 + \sin(n)}{n^2 - 5}. \quad (5 \text{ points})$$

Use the Limit Comparison Theorem to compare the first series to $\sum_{n=4}^{\infty} \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{\frac{3}{n^2 - 5}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{3}{1 - \frac{5}{n^2}} = 3 \neq 0.$$

So $\sum_{n=4}^{\infty} \frac{3}{n^2 - 5}$ converges $\iff \sum_{n=4}^{\infty} \frac{1}{n^2}$ converges. (5 points)

 $\sum_{n=4}^{\infty} \frac{1}{n^2}$ converges by *p*-Series Theorem for p = 2 > 1. (5 points)

The series
$$\sum_{n=4}^{\infty} \frac{2+\sin(n)}{n^2-5}$$
 converges.

METHOD 2: Use the Limit Comparison Theorem with $\sum_{n=4}^{\infty} \frac{1}{n^{\alpha}}$, for $1 < \alpha < 2$. Take for example $\alpha = 3/2$.

$$\lim_{n \to \infty} \frac{\frac{2 + \sin(n)}{n^2 - 5}}{\frac{1}{n^{3/2}}} = \lim_{n \to \infty} \frac{2 + \sin(n)}{\frac{n^2 - 5}{n^{3/2}}} = \lim_{n \to \infty} \frac{2 + \sin(n)}{\sqrt{n - \frac{5}{n^{3/2}}}}.$$
 (5 points)

Since $2 + \sin(n)$ is bounded and $\lim_{n \to \infty} \sqrt{n} - \frac{5}{n^{3/2}} = \infty$,

$$\lim_{n \to \infty} \frac{2 + \sin(n)}{\sqrt{n} - \frac{5}{n^{3/2}}} = 0. \quad (5 \text{ points})$$

By the Limit Comparison Theorem,

Convergence of
$$\sum_{n=4}^{\infty} \frac{1}{n^{3/2}} \Rightarrow$$
 convergence of $\sum_{n=4}^{\infty} \frac{2+\sin(n)}{n^2-5}$. (5 points)

Finally, $\sum_{n=4}^{\infty} \frac{1}{n^{3/2}}$ converges because of the *p*-Series Theorem for p = 3/2 > 1. (5 points)