Solution of Problem 3 from Midterm 3

December 1, 2009

There are several ways to do this problem. Here are two methods:

Method 1:

Use that the sine is a bounded function

$$
\begin{aligned}
& -1 \leq \sin (n) \leq 1 \\
& 1 \leq 2+\sin (n) \leq 3 \quad(5 \text { points })
\end{aligned}
$$

In particular, this implies this is a positive series.

$$
\frac{1}{n^{2}-5} \leq \frac{2+\sin (n)}{n^{2}-5} \leq \frac{3}{n^{2}-5}
$$

by the Comparison Theorem, convergence of

$$
\sum_{n=4}^{\infty} \frac{3}{n^{2}-5} \text { implies convergence of } \sum_{n=4}^{\infty} \frac{2+\sin (n)}{n^{2}-5} \text {. (5 points) }
$$

Use the Limit Comparison Theorem to compare the first series to $\sum_{n=4}^{\infty} \frac{1}{n^{2}}$.

$$
\begin{aligned}
\qquad \lim _{n \rightarrow \infty} \frac{\frac{3}{n^{2}-5}}{\frac{1}{n^{2}}} & =\lim _{n \rightarrow \infty} \frac{3}{1-\frac{5}{n^{2}}}=3 \neq 0 . \\
\text { So } \sum_{n=4}^{\infty} \frac{3}{n^{2}-5} \text { converges } & \Longleftrightarrow \sum_{n=4}^{\infty} \frac{1}{n^{2}} \text { converges. (5 points) }
\end{aligned}
$$

$\sum_{n=4}^{\infty} \frac{1}{n^{2}}$ converges by p-Series Theorem for $p=2>1$. (5 points)

$$
\text { The series } \sum_{n=4}^{\infty} \frac{2+\sin (n)}{n^{2}-5} \text { converges. }
$$

Method 2: Use the Limit Comparison Theorem with $\sum_{n=4}^{\infty} \frac{1}{n^{\alpha}}$, for $1<\alpha<2$. Take for example $\alpha=3 / 2$.

$$
\lim _{n \rightarrow \infty} \frac{\frac{2+\sin (n)}{n^{2}-5}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{2+\sin (n)}{\frac{n^{2}-5}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{2+\sin (n)}{\sqrt{n}-\frac{5}{n^{3 / 2}}} \text {. (5 points) }
$$

Since $2+\sin (n)$ is bounded and $\lim _{n \rightarrow \infty} \sqrt{n}-\frac{5}{n^{3 / 2}}=\infty$,

$$
\lim _{n \rightarrow \infty} \frac{2+\sin (n)}{\sqrt{n}-\frac{5}{n^{3 / 2}}}=0 . \quad \text { (5 points) }
$$

By the Limit Comparison Theorem,

$$
\text { Convergence of } \sum_{n=4}^{\infty} \frac{1}{n^{3 / 2}} \Rightarrow \text { convergence of } \sum_{n=4}^{\infty} \frac{2+\sin (n)}{n^{2}-5} . \quad \text { (5 points) }
$$

Finally, $\sum_{n=4}^{\infty} \frac{1}{n^{3 / 2}}$ converges because of the p-Series Theorem for $p=3 / 2>1$. (5 points)

