Solution of Problem 3 from Midterm 3

December 1, 2009

There are several ways to do this problem. Here are two methods:
METHOD 1:
Use that the sine is a bounded function
—1<sin(n) <1
1<2+sin(n) <3 (5 points)

In particular, this implies this is a positive series.
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Use the Limit Comparison Theorem to compare the first series to )~ , -5.
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METHOD 2: Use the Limit Comparison Theorem with Y~ ,
for 1 < a < 2. Take for example oo = 3/2.
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Since 2 + sin(n) is bounded and lim,, o v/n — ﬁ = 00,
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By the Limit Comparison Theorem,
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Finally, > 7, # converges because of the p-Series Theorem for p = 3/2 > 1.
(5 points)



