Midterm 3, Problem 3

November 13, 2013

Problem (25pts): Determine whether $\int_{0}^{\pi} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}}$ converges. If so, evaluate.

Solution:

(6 pts): Since the integrand is defined on $(0, \pi)$, and

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{\cos (x)}{\sqrt{\sin (x)}}\right)=+\infty
$$

and

$$
\lim _{x \rightarrow \pi^{-}}\left(\frac{\cos (x)}{\sqrt{\sin (x)}}\right)=-\infty
$$

one must break the integral into two improper integrals.
(2pts): So, pick a value $0<d<\pi$. Then,

$$
\int_{0}^{\pi} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}}=\int_{0}^{d} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}}+\int_{d}^{\pi} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}}
$$

provided that both of the improper integrals on the right-hand side exist. Note: I will pick $d=\frac{\pi}{2}$. Also OK to leave it as a variable.
(8pts): Then,

$$
\begin{aligned}
\int_{0}^{d} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}} & =\lim _{a \rightarrow 0^{+}} \int_{a}^{d} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}} \\
& \left.=\lim _{a \rightarrow 0^{+}}(2 \sqrt{\sin (x)}]_{a}^{d}\right) \\
& =2 \sqrt{\sin (d)} \\
& =2 .
\end{aligned}
$$

(Note: 4 points given for the substitution $u=\sin (x)$, etc, while evaluating the integral; 4 points given for the remainder of the work.)
(8pts): Similarly,

$$
\begin{aligned}
\int_{d}^{\pi} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}} & =\lim _{b \rightarrow \pi^{-}} \int_{d}^{b} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}} \\
& \left.=\lim _{b \rightarrow \pi^{-}}(2 \sqrt{\sin (x)}]_{d}^{b}\right) \\
& =-2 \sqrt{\sin (d)} \\
& =-2
\end{aligned}
$$

(Note: Points given identically as in the other integral.)
(1pt): Thus,

$$
\int_{0}^{\pi} \frac{\cos (x) \mathrm{dx}}{\sqrt{\sin (x)}}=2 \sqrt{\sin (d)}+(-2 \sqrt{\sin (d)})=0
$$

