Math 141 Midterm 3 Question 3 Solution

November 10, 2014

Question: a)

$$
\int \frac{x^{2}}{x^{2}-1} d x
$$

b)

$$
\int \frac{x^{3}+3 x}{\left(x^{2}+2\right)^{2}} d x
$$

Solution:

a) Rewrite the numerator as $x^{2}-1+1$ (or use polynomial long division) and then factor the integrand into

$$
\int 1+\frac{1}{x^{2}-1} d x
$$

4 pts
Split the second term using partial fractions. $\frac{1}{x^{2}-1}=\frac{A}{x+1}+\frac{B}{x-1}$ and so $1=A(x-1)+B(x+1)=$ $(A+B) x+(B-A)$. Equate coefficients so $A+B=0$ and $B-A=1$. Solve this system so that

$$
A=-\frac{1}{2}, B=\frac{1}{2}
$$

Now integrate $\int 1-\frac{1}{2} \frac{1}{x+1}+\frac{1}{2} \frac{1}{x-1} d x$ to get

$$
x-\frac{1}{2} \ln (x+1)+\frac{1}{2} \ln (x-1)+C
$$

b) Since the degree in the numerator is smaller than the degree of the polynomial in the denominator we can immediately use partial fractions. Note that there is a method of solving this just by using a u-substitution. We have

$$
\frac{x^{3}+3 x}{\left(x^{2}+2\right)^{2}}=\frac{A x+B}{x^{+} 2}+\frac{C x+D}{\left(x^{+} 2\right)^{2}}
$$

4 pts
Thus $x^{3}+3 x=(A x+B)\left(x^{2}+2\right)+C x+D=A x^{3}+2 A x+B x^{2}+2 B+C x+D$ and so $x^{3}+3 x=$ $A x^{3}+B x^{2}+(2 A+C) x+(2 B+D)$. Equate coefficients so

$$
\begin{gathered}
A=1 \\
B=0 \\
2 A+C=3 \\
2 B+D=0
\end{gathered}
$$

Thus

$$
A=1, B=0, C=1, D=0
$$

Integrate $\int \frac{x}{x^{2}+2}+\frac{x}{\left(x^{2}+2\right)^{2}} d x$. The same $\mathrm{u}=$ substitution $u=x^{2}+2$ with $d u=2 x d x$ works for both parts and so

$$
\begin{aligned}
& \int \frac{1}{2} \frac{1}{u}+\frac{1}{2} \frac{1}{u^{2}} d u \\
= & \frac{1}{2} \ln (u)-\frac{1}{2} \frac{1}{u}+C
\end{aligned}
$$

So finally,

$$
=\frac{1}{2} \ln \left(x^{2}+2\right)-\frac{1}{2} \frac{1}{x^{2}+2}+C
$$

8 pts

