## Solution to \#3, Test \#4

December 8, 2011
\#3. (Find the Taylor series expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x} /(1+\mathrm{x})$ around 0 .)
Proof. $\mathrm{f}(\mathrm{x})=\frac{x}{1+x}=1-\frac{1}{1+x} \mathrm{f}(0)=0$
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{(1+x)^{2}} \mathrm{f}^{\prime}(0)=1$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{-2}{(1+x)^{3}} \mathrm{f}^{\prime \prime}(0)=-2$
$f^{(n)}(x)=\frac{(-1)^{n} n!}{(1+x)^{n+1}} f^{(n)}(0)=(-1)^{n+1} n!$
General form: $\mathrm{f}(\mathrm{x})=\sum_{n=1}^{\infty}(-1)^{n+1} x^{n}$
Alternate Solution:
$\mathrm{f}(\mathrm{x})=\frac{x}{1+x}=x^{\frac{1}{1-(-x)}}$
Since $\frac{1}{1-y}=\sum_{n=0}^{\infty} y^{n}$, it follows that
$\mathrm{f}(\mathrm{x})=\mathrm{x} \sum_{n=0}^{\infty}(-1)^{n} x^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n+1}$

Method 1:
6 points for the first few derivatives correctly computed and evaluated at 0
4 points for correct generalization of $f^{n}(0)$
5 points for correct coefficients in series
3 points for correct Taylor series form
2 points for correct starting index
Method 2:
5 points for correct formula for $1 /(1-\mathrm{x})$
5 points for formatting $f(x)$ correctly to use the $1 /(1-\mathrm{x})$ formula
5 points for correct series for $1 /(1+\mathrm{x})$
2 points for multiplying through by x
3 ponits for correct response

