December 8, 2011

#3. (Find the Taylor series expansion of f(x) = x/(1+x) around 0.)

Proof.
$$f(x) = \frac{x}{1+x} = 1 - \frac{1}{1+x} f(0) = 0$$

 $f'(x) = \frac{1}{(1+x)^2} f'(0) = 1$
 $f''(x) = \frac{-2}{(1+x)^3} f''(0) = -2$
 $f^{(n)}(x) = \frac{(-1)^n n!}{(1+x)^{n+1}} f^{(n)}(0) = (-1)^{n+1} n!$

General form: $f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} x^n$ Alternate Solution: $f(x) = \frac{x}{1+x} = x \frac{1}{1-(-x)}$ Since $\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n$, it follows that $f(x) = x \sum_{n=0}^{\infty} (-1)^n x^n = \sum_{n=0}^{\infty} (-1)^n x^{n+1}$

Method 1:

6 points for the first few derivatives correctly computed and evaluated at 0

4 points for correct generalization of $f^n(0)$

5 points for correct coefficients in series

3 points for correct Taylor series form

2 points for correct starting index

Method 2:

5 points for correct formula for 1/(1-x)

5 points for formatting f(x) correctly to use the 1/(1-x) formula

5 points for correct series for 1/(1+x)

2 points for multiplying through by x

3 ponits for correct response