Solution: Exam 1, Problem 4

10th December 2013
Find the Taylor Expansion.

$$
f(x)=\frac{x^{2}}{1+x}
$$

Grading scheme :

Shorter method.

$$
\frac{1}{1+x}=1-x+x^{2}-\ldots=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \ldots 10 \text { points }
$$

So,

$$
\frac{x^{2}}{1+x}=x^{2}\left(1-x+x^{2}-\ldots\right)=\sum_{n=0}^{\infty}(-1)^{n} x^{n+2} \ldots 10 \text { points }
$$

If a function equals its power series, then this series is the Taylor series of the function. So, the Taylor series of the given function about $x=0$ is $\sum_{n=0}^{\infty}(-1)^{n} x^{n+2} \ldots 5$ points

Note: No one in the class who has used this method has written this above statement, so everyone has lost 5 points. I have indicated this on the answer papers by mentioning 'statement?'.

Longer method.
Some of you have used the Taylor series formula to differentiate the function $\frac{x^{2}}{1+x}$.

$$
\begin{gathered}
g(x)=\frac{x^{2}}{1+x}=\left(x^{2}\right)(1+x)^{-1} \\
g(0)=1 \\
g^{\prime}(x)=\frac{2 x(1+x)-x^{2}}{(1+x)^{2}}=\frac{x^{2}+2 x}{(1+x)^{2}}=\frac{x^{2}+2 x+1-1}{(1+x)^{2}}=\frac{(1+x)^{2}-1}{(1+x)^{2}}=1-\frac{1}{(1+x)^{2}}
\end{gathered}
$$

$$
\text { Hence, } g^{\prime}(0)=1-1=0
$$

$$
g^{\prime \prime}(x)=(-1)(-2) \frac{1}{(1+x)^{3}} \text { Hence, } g^{\prime \prime}(0)=(-1)^{2} 2!=2 \ldots 7 \text { points }
$$

In general, for $k \geq 2$

$$
g^{(k)}(x)=(-1)(-2) \ldots(-k) \frac{1}{(1+x)^{k+1}}
$$

Thus $g^{(k)}(0)=(-1)^{k} k!\ldots 11$ points
Note $g(0)=0, g^{\prime}(0)=0$. Hence, the Taylor series of $g(x)=\frac{x^{2}}{1+x}$ around $x=0$ is,

$$
\sum_{n=0}^{\infty} g^{(k)}(0) \frac{x^{k}}{k!}=\sum_{n=2}^{\infty} g^{(k)}(0) \frac{x^{k}}{k!}=\sum_{n=2}^{\infty}(-1)^{k} k!\frac{x^{k}}{k!}=\sum_{n=2}^{\infty}(-1)^{k} x^{k} \ldots 7 \text { points }
$$

