Problem 3 Solution

Question:
Find the Taylor series of $f(x)=x \ln \left(1+x^{2}\right)$.
Solution:
First, if not memorized, one must derive the Taylor series for $\ln (1+x)$.

$$
\begin{array}{ll}
f(x)=\ln (1+x) & f(0)=0 \\
f^{\prime}(x)=(1+x)^{-1} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-(1+x)^{-2} & f^{\prime \prime}(0)=-1 \\
f^{(3)}(x)=2(1+x)^{-3} & f^{(3)}(0)=2 \\
f^{(4)}(x)=-6(1+x)^{-4} & f^{(4)}(0)=-6
\end{array}
$$

Then one can deduce that for $n \geq 1$

$$
\begin{equation*}
f^{(n)}(x)=(-1)^{n+1}(n-1)!(1+x)^{-n} \quad f^{(n)}(0)=(-1)^{n+1}(n-1)!. \tag{4pts}
\end{equation*}
$$

The formula for the Taylor Series of $\ln (1+x)$ is then

$$
\begin{equation*}
\ln (1+x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1} . \tag{4pts}
\end{equation*}
$$

Then the Taylor series of $\ln \left(1+x^{2}\right)$ is given by

$$
\begin{equation*}
\ln \left(1+x^{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{2 n+2}, \tag{6pts}
\end{equation*}
$$

and the Taylor series for $x \ln \left(1+x^{2}\right)$ is

$$
\begin{equation*}
x \ln \left(1+x^{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{2 n+3} . \tag{5pts}
\end{equation*}
$$

