Problem 4 Solution

Question :
Let R be the region between the graph of function $f(x)=2+\sqrt{1-x^{2}}$ and the x-axis, on the interval $[0,1]$. Find the volume of the solid obtained by revolving R about the y-axis.
Solution:
First set up the formula for the volume using the shells method

$$
\begin{equation*}
V=2 \pi \int_{0}^{1} x\left(2+\sqrt{1-x^{2}}\right) d x \tag{10pts}
\end{equation*}
$$

Then integrate the first half of the definite integral

$$
\begin{equation*}
2 \pi \int_{0}^{1} 2 x d x=\left.2 \pi x^{2}\right|_{0} ^{1}=2 \pi \tag{3pts}
\end{equation*}
$$

To integrate $2 \pi \int_{0}^{1} x \sqrt{1-x^{2}} d x$ use a u substitution

$$
\begin{gather*}
u=1-x^{2} \\
d u=-2 x d x \tag{5pts}
\end{gather*}
$$

which gives

$$
\begin{equation*}
2 \pi \int_{x=0}^{x=1} x \sqrt{1-x^{2}} d x=-\pi \int_{u=1}^{u=0} \sqrt{u} d u . \tag{5pts}
\end{equation*}
$$

So the final answer is the sum of the two halves of the definite integral

$$
\begin{equation*}
V=2 \pi+\left(-\left.\pi \frac{2}{3} u^{3 / 2}\right|_{1} ^{0}\right)=\frac{8 \pi}{3} . \tag{2pts}
\end{equation*}
$$

