Midterm III problem 4.

Find the interval of convergence for the series

$$
\sum_{n=2}^{\infty} \frac{2 x^{n}}{3^{n+1} n^{2}}
$$

Solution

1. Determine the radius of convergence [15pts distributed as follows: indicating an appropriate test -2 pts, setting up the limit -2 pts, finding the limit -8 pts , making the conclusion about the radius of convergence - 3 pts)]

Option 1. Ratio test:

$$
\begin{aligned}
& r=\lim _{n \rightarrow \infty}\left|\frac{2 x^{n+1}}{3^{n+2}(n+1)^{2}}\right| /\left|\frac{2 x^{n}}{3^{n+1} n^{2}}\right|=\lim _{n \rightarrow \infty} \frac{2|x|^{n+1} 3^{n+1} n^{2}}{3^{n+2}(n+1)^{2} 2|x|^{n}}= \\
& \lim _{n \rightarrow \infty} \frac{|x| n^{2}}{3(n+1)^{2}}=\frac{|x|}{3} \lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=\frac{|x|}{3} \lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{2}}=\frac{|x|}{3}
\end{aligned}
$$

Series converges absolutely when $r=\frac{|x|}{3}<1$, i.e. $|x|<3$ and diverges if $r=\frac{|x|}{3}>1$, i.e. $|x|>3$, hence, $R=3$. Option 2. Root test:

$$
r=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{2 x^{n}}{3^{n+1} n^{2}}\right|}=\lim _{n \rightarrow \infty} \frac{2^{1 / n}|x|}{3^{1 / n} 3 n^{2 / n}}=\frac{|x|}{3}
$$

Series converges absolutely when $r=\frac{|x|}{3}<1$, i.e. $|x|<3$ and diverges if $r=\frac{|x|}{3}>1$, i.e. $|x|>3$, hence, $R=3$.
2. Check whether the series converges at the endpoints of the interval $(-R, R)$ (if R is not 0 or ∞)(5 pts)

First check $x=3$: the series becomes

$$
\sum_{n=2}^{\infty} \frac{23^{n}}{3^{n+1} n^{2}}=\frac{2}{3} \sum_{n=2}^{\infty} \frac{1}{n^{2}},
$$

which is a multiple of the convergent series (p-series with $p=2>1$), hence, the series converges and $x=3$ is included into the interval of convergence.

Now check $x=-3$: the series becomes

$$
\sum_{n=2}^{\infty} \frac{2(-3)^{n}}{3^{n+1} n^{2}}=\frac{2}{3} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

which is absolutely convergent for the reason described above. Hence, $x=-3$ is included into the interval as well.

The final answer is $I=[-3,3]$.

